A007504 Sum of the first n primes.
0, 2, 5, 10, 17, 28, 41, 58, 77, 100, 129, 160, 197, 238, 281, 328, 381, 440, 501, 568, 639, 712, 791, 874, 963, 1060, 1161, 1264, 1371, 1480, 1593, 1720, 1851, 1988, 2127, 2276, 2427, 2584, 2747, 2914, 3087, 3266, 3447, 3638, 3831, 4028, 4227, 4438, 4661, 4888
Offset: 0
References
- E. Bach and J. Shallit, §2.7 in Algorithmic Number Theory, Vol. 1: Efficient Algorithms, MIT Press, Cambridge, MA, 1996.
- H. L. Nelson, "Prime Sums", J. Rec. Math., 14 (1981), 205-206.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- R. J. Mathar, Table of n, a(n) for n = 0..100000
- C. Axler, On a Sequence involving Prime Numbers, J. Int. Seq. 18 (2015) # 15.7.6.
- Christian Axler, New bounds for the sum of the first n prime numbers, arXiv:1606.06874 [math.NT], 2016.
- P. Hecht, Post-Quantum Cryptography: S_381 Cyclic Subgroup of High Order, International Journal of Advanced Engineering Research and Science (IJAERS, 2017) Vol. 4, Issue 6, 78-86.
- R. J. Mathar, Table of 100000n, a(100000n) for n = 1..10000
- Romeo Meštrović, Curious conjectures on the distribution of primes among the sums of the first 2n primes, arXiv:1804.04198 [math.NT], 2018.
- Vladimir Shevelev, Asymptotics of sum of the first n primes with a remainder term
- Nilotpal Kanti Sinha, On the asymptotic expansion of the sum of the first n primes, arXiv:1011.1667 [math.NT], 2010-2015.
- Lawrence C. Washington, Sums of Powers of Primes II, arXiv preprint (2022). arXiv:2209.12845 [math.NT]
- Eric Weisstein's World of Mathematics, Prime Sums
- OEIS Wiki, Sums of powers of primes divisibility sequences
Crossrefs
Programs
-
GAP
P:=Filtered([1..250],IsPrime);; a:=Concatenation([0],List([1..Length(P)],i->Sum([1..i],k->P[k]))); # Muniru A Asiru, Oct 07 2018
-
Haskell
a007504 n = a007504_list !! n a007504_list = scanl (+) 0 a000040_list -- Reinhard Zumkeller, Oct 01 2014, Oct 03 2011
-
Magma
[0] cat [&+[ NthPrime(k): k in [1..n]]: n in [1..50]]; // Bruno Berselli, Apr 11 2011 (adapted by Vincenzo Librandi, Nov 27 2015 after Hasler's change on Mar 05 2014)
-
Maple
s1:=[2]; for n from 2 to 1000 do s1:=[op(s1),s1[n-1]+ithprime(n)]; od: s1; A007504 := proc(n) add(ithprime(i), i=1..n) ; end proc: # R. J. Mathar, Sep 20 2015
-
Mathematica
Accumulate[Prime[Range[100]]] (* Zak Seidov, Apr 10 2011 *) primeRunSum = 0; Table[primeRunSum = primeRunSum + Prime[k], {k, 100}] (* Zak Seidov, Apr 16 2011 *)
-
PARI
A007504(n) = sum(k=1,n,prime(k)) \\ Michael B. Porter, Feb 26 2010
-
PARI
a(n) = vecsum(primes(n)); \\ Michel Marcus, Feb 06 2021
-
Python
from itertools import accumulate, count, islice from sympy import prime def A007504_gen(): return accumulate(prime(n) if n > 0 else 0 for n in count(0)) A007504_list = list(islice(A007504_gen(),20)) # Chai Wah Wu, Feb 23 2022
Formula
a(n) ~ n^2 * log(n) / 2. - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 24 2001 (see Bach & Shallit 1996)
a(n) = A014284(n+1) - 1. - Jaroslav Krizek, Aug 19 2009
a(n+1) - a(n) = A000040(n+1). - Jaroslav Krizek, Aug 19 2009
For n >= 3, a(n) >= (n-1)^2 * (log(n-1) - 1/2)/2 and a(n) <= n*(n+1)*(log(n) + log(log(n))+ 1)/2. Thus a(n) = n^2 * log(n) / 2 + O(n^2*log(log(n))). It is more precise than in Fares's comment. - Vladimir Shevelev, Aug 01 2013
a(n) = (n^2/2)*(log n + log log n - 3/2 + (log log n - 3)/log n + (2 (log log n)^2 - 14 log log n + 27)/(4 log^2 n) + O((log log n/log n)^3)) [Sinha]. - Charles R Greathouse IV, Jun 11 2015
G.f: (x*b(x))/(1-x), where b(x) is the g.f. of A000040. - Mario C. Enriquez, Dec 10 2016
Extensions
More terms from Stefan Steinerberger, Apr 11 2006
a(0) = 0 prepended by M. F. Hasler, Mar 05 2014
Comments