A046526 Numbers common to A033950 and A035033.
1, 2, 8, 9, 12, 18, 24, 36, 40, 56, 60, 72, 80, 84, 96, 108, 132, 180, 240, 252, 288, 360, 480, 504, 720, 1260
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
Select[Range[1300],#Harvey P. Dale, Apr 11 2014 *)
isok(n) = (n < numdiv(n)^2) \\ Michel Marcus, Jun 07 2013
k = 27935107200 = 128*27*25*7*11*13*17*19 has 3072 divisors, 3072^3/k = 1.03779..., so k is a term.
t = {}; Do[If[n < DivisorSigma[0,n]^3, AppendTo[t, n]], {n, 10^3}]; t (* T. D. Noe, May 14 2013 *) Select[Range[120],DivisorSigma[0,#]^3>#&] (* Harvey P. Dale, Apr 22 2019 *)
is(n)=numdiv(n)^3>n \\ Charles R Greathouse IV, Sep 14 2015
Select[Range[100], DivisorSigma[0, #]^2 < # &] (* Amiram Eldar, Aug 29 2020 *)
Select[Range[100],#>=DivisorSigma[0,#]^2&] (* Harvey P. Dale, May 05 2017 *)
These maximal terms are usually "near" to 2^n. For n=1..10 they are equal to 2^n. At n=21, a(21)=2097144, 1048576 < a(21) < 2097144 = 8*27*7*19*73 has d=128 divisors, of which the cube is d^3d=2097152. So this maximum is near to but still less than d^3.
Table[Last@ Select[Range @@ (2^{n - 1, n}), DivisorSigma[0, #]^3 > # &], {n, 22}] (* Michael De Vlieger, Dec 31 2016 *)
a(n) = {k = 2^n; while(numdiv(k)^3 <= k, k--); k;} \\ Michel Marcus, Dec 11 2013
Equality holds in 12 cases: n=6561=3^8,d[n]=9 and d^4=9^4=3^8=n n=625,d[n]=5, so d^4=n
Select[Select[Range[2^16], PrimePowerQ], DivisorSigma[0, #]^4 >= # &] (* Michael De Vlieger, Jul 15 2017 *)
14175 = 81*25*7 has 30 divisors, and 30^3 = 27000 > 14175.
Select[Range[1, 10^6 + 1, 2], DivisorSigma[0, #]^3 > # &] (* Michael De Vlieger, Oct 26 2017 *)
isok(n) = (n % 2) && (numdiv(n)^3 > n); \\ Michel Marcus, Dec 19 2013
n=254, d(n)=4, d^3 = 64 < 254 so 254 is in the sequence.
is(n)=numdiv(n)^3 < n \\ Charles R Greathouse IV, Feb 25 2017
Select[Range[1265], Mod[#, x = DivisorSigma[0, #]] == 0 && # < x^2 &] (* Jayanta Basu, Jun 27 2013 *)
Comments