cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A060278 Sum of composite divisors of n less than n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 10, 0, 0, 0, 12, 0, 15, 0, 14, 0, 0, 0, 30, 0, 0, 9, 18, 0, 31, 0, 28, 0, 0, 0, 49, 0, 0, 0, 42, 0, 41, 0, 26, 24, 0, 0, 70, 0, 35, 0, 30, 0, 60, 0, 54, 0, 0, 0, 97, 0, 0, 30, 60, 0, 61, 0, 38, 0, 59, 0, 117, 0, 0, 40, 42, 0, 71, 0, 98, 36, 0, 0, 127, 0, 0, 0
Offset: 1

Views

Author

Jack Brennen, Mar 28 2001

Keywords

Crossrefs

Programs

  • Haskell
    a060278 1 = 0
    a060278 n = sum $ filter ((== 0) . a010051) $ tail $ a027751_row n
    -- Reinhard Zumkeller, Apr 05 2013
    
  • Maple
    for n from 1 to 300 do s := 0: for j from 2 to n-1 do if isprime(j) then else if n mod j = 0 then s := s+j fi; fi: od: printf(`%d,`,s) od:
  • Mathematica
    Join[{0},Table[Total[Select[Most[Rest[Divisors[n]]],!PrimeQ[#]&]],{n,2,90}]] (* Harvey P. Dale, Oct 25 2011 *)
    a[n_] := DivisorSigma[1, n] - Plus @@ FactorInteger[n][[;; , 1]] - If[PrimeQ[n], 0, n] - 1; a[1] = 0; Array[a, 100] (* Amiram Eldar, Jun 20 2022 *)
  • PARI
    a(n) = sumdiv(n, d, if ((d1) && !isprime(d), d)); \\ Michel Marcus, Jan 13 2020

Formula

From Reinhard Zumkeller, Apr 05 2013: (Start)
a(n) = Sum_{k=2..A000005(n)-1} A010051(A027751(n,k));
a(A037143(n)) = 0;
a(A033942(n)) > 0. (End)

Extensions

More terms from James Sellers and Matthew Conroy, Mar 29 2001

A023891 Sum of composite divisors of n.

Original entry on oeis.org

0, 0, 0, 4, 0, 6, 0, 12, 9, 10, 0, 22, 0, 14, 15, 28, 0, 33, 0, 34, 21, 22, 0, 54, 25, 26, 36, 46, 0, 61, 0, 60, 33, 34, 35, 85, 0, 38, 39, 82, 0, 83, 0, 70, 69, 46, 0, 118, 49, 85, 51, 82, 0, 114, 55, 110, 57, 58, 0, 157, 0, 62, 93, 124, 65, 127, 0, 106, 69, 129, 0
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Array[ Plus @@ (Select[ Divisors[ # ], (!PrimeQ[ # ] && #>1)& ])&, 75 ]
    a[n_] := DivisorSigma[1, n] - Plus @@ FactorInteger[n][[;; , 1]] - 1; a[1] = 0; Array[a, 100] (* Amiram Eldar, Jun 20 2022 *)
  • PARI
    a(n) = sumdiv(n, d, d*!isprime(d)) - 1; \\ Michel Marcus, Jun 12 2019

Formula

a(n) = A023890(n) - 1. - Sean A. Irvine, Jun 11 2019

A035321 Sum of composite divisors of n that are not primes nor prime powers.

Original entry on oeis.org

0, 0, 0, 0, 0, 6, 0, 0, 0, 10, 0, 18, 0, 14, 15, 0, 0, 24, 0, 30, 21, 22, 0, 42, 0, 26, 0, 42, 0, 61, 0, 0, 33, 34, 35, 72, 0, 38, 39, 70, 0, 83, 0, 66, 60, 46, 0, 90, 0, 60, 51, 78, 0, 78, 55, 98, 57, 58, 0, 153, 0, 62, 84, 0, 65, 127, 0, 102, 69, 129, 0, 168, 0, 74, 90, 114, 77
Offset: 1

Views

Author

Keywords

Crossrefs

One less than A178637.

Programs

  • Maple
    pp := array(1..100); for i from 1 to 100 do pp[i] := 0; od: for i from 1 to 25 do for j from 1 to 6 do t1 := ithprime(i)^j; if t1<100 then pp[t1] := 1; fi; od: od: pp[1] := 1; A035321 := proc(n) local i,d,t1,t2; t1 := 0; for d from 1 to n do if n mod d = 0 and pp[d] = 0 then t1 := t1+d; fi; od; t1; end;
  • Mathematica
    Array[ Plus @@ (Select[ Divisors[ # ], (Length[ FactorInteger[ # ] ]>1)& ])&, 80 ]
  • PARI
    A035321(n) = sumdiv(n,d,(omega(d)>1)*(d)); \\ Antti Karttunen, Aug 06 2018

Formula

a(n) = A178637(n) - 1. - Antti Karttunen, Aug 06 2018

Extensions

Description corrected by Jack Brennen, Mar 28 2001
Showing 1-3 of 3 results.