cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A037143 Numbers with at most 2 prime factors (counted with multiplicity).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 25, 26, 29, 31, 33, 34, 35, 37, 38, 39, 41, 43, 46, 47, 49, 51, 53, 55, 57, 58, 59, 61, 62, 65, 67, 69, 71, 73, 74, 77, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 101, 103, 106, 107, 109, 111, 113, 115, 118
Offset: 1

Views

Author

Keywords

Comments

A001222(a(n)) <= 2; A054576(a(n)) = 1. - Reinhard Zumkeller, Mar 10 2006
Products of two noncomposite numbers. - Juri-Stepan Gerasimov, Apr 15 2010
Also, numbers with permutations of all divisors only with coprime adjacent elements: A109810(a(n)) > 0. - Reinhard Zumkeller, May 24 2010
A060278(a(n)) = 0. - Reinhard Zumkeller, Apr 05 2013
1 together with numbers k such that sigma(k) + phi(k) - d(k) = 2k - 2. - Wesley Ivan Hurt, May 03 2015
Products of two not necessarily distinct terms of A008578 (the same relation between A000040 and A001358). - Flávio V. Fernandes, May 28 2021

Crossrefs

Union of A008578 and A001358. Complement of A033942.
A101040(a(n))=1 for n>1.
Subsequence of A037144. - Reinhard Zumkeller, May 24 2010
A098962 and A139690 are subsequences.

Programs

  • Haskell
    a037143 n = a037143_list !! (n-1)
    a037143_list = 1 : merge a000040_list a001358_list where
       merge xs'@(x:xs) ys'@(y:ys) =
             if x < y then x : merge xs ys' else y : merge xs' ys
    -- Reinhard Zumkeller, Dec 18 2012
    
  • Maple
    with(numtheory): A037143:=n->`if`(bigomega(n)<3,n,NULL): seq(A037143(n), n=1..200); # Wesley Ivan Hurt, May 03 2015
  • Mathematica
    Select[Range[120], PrimeOmega[#] <= 2 &] (* Ivan Neretin, Aug 16 2015 *)
  • PARI
    is(n)=bigomega(n)<3 \\ Charles R Greathouse IV, Apr 29 2015
    
  • Python
    from math import isqrt
    from sympy import primepi, primerange
    def A037143(n):
        def f(x): return int(n-2+x-primepi(x)-sum(primepi(x//k)-a for a,k in enumerate(primerange(isqrt(x)+1))))
        kmin, kmax = 1,2
        while f(kmax) >= kmax:
            kmax <<= 1
        while True:
            kmid = kmax+kmin>>1
            if f(kmid) < kmid:
                kmax = kmid
            else:
                kmin = kmid
            if kmax-kmin <= 1:
                break
        return kmax # Chai Wah Wu, Aug 23 2024

Extensions

More terms from Henry Bottomley, Aug 15 2001

A033942 Positive integers with at least 3 prime factors (counted with multiplicity).

Original entry on oeis.org

8, 12, 16, 18, 20, 24, 27, 28, 30, 32, 36, 40, 42, 44, 45, 48, 50, 52, 54, 56, 60, 63, 64, 66, 68, 70, 72, 75, 76, 78, 80, 81, 84, 88, 90, 92, 96, 98, 99, 100, 102, 104, 105, 108, 110, 112, 114, 116, 117, 120, 124, 125, 126, 128, 130, 132, 135, 136, 138, 140, 144
Offset: 1

Views

Author

Keywords

Comments

A001055(a(n)) > 2; e.g., for a(3)=18 there are 4 factorizations: 1*18 = 2*9 = 2*3*3 = 3*6. - Reinhard Zumkeller, Dec 29 2001
A001222(a(n)) > 2; A054576(a(n)) > 1. - Reinhard Zumkeller, Mar 10 2006
Also numbers such that no permutation of all divisors exists with coprime adjacent elements: A109810(a(n))=0. - Reinhard Zumkeller, May 24 2010
A211110(a(n)) > 3. - Reinhard Zumkeller, Apr 02 2012
A060278(a(n)) > 0. - Reinhard Zumkeller, Apr 05 2013
Volumes of rectangular cuboids with each side > 1. - Peter Woodward, Jun 16 2015
If k is a term then so is k*m for m > 0. - David A. Corneth, Sep 30 2020
Numbers k with a pair of proper divisors of k, (d1,d2), such that d1 < d2 and gcd(d1,d2) > 1. - Wesley Ivan Hurt, Jan 01 2021

Crossrefs

Cf. A014612.
A101040(a(n))=0.
A033987 is a subsequence; complement of A037143. - Reinhard Zumkeller, May 24 2010
Subsequence of A080257.
See also A002808 for 'Composite numbers' or 'Divisible by at least 2 primes'.

Programs

  • Haskell
    a033942 n = a033942_list !! (n-1)
    a033942_list = filter ((> 2) . a001222) [1..]
    -- Reinhard Zumkeller, Oct 27 2011
    
  • Maple
    with(numtheory): A033942:=n->`if`(bigomega(n)>2, n, NULL): seq(A033942(n), n=1..200); # Wesley Ivan Hurt, Jun 23 2015
  • Mathematica
    Select[ Range[150], Plus @@ Last /@ FactorInteger[ # ] > 2 &] (* Robert G. Wilson v, Oct 12 2005 *)
    Select[Range[150],PrimeOmega[#]>2&] (* Harvey P. Dale, Jun 22 2011 *)
  • PARI
    is(n)=bigomega(n)>2 \\ Charles R Greathouse IV, May 04 2013
    
  • Python
    from sympy import factorint
    def ok(n): return sum(factorint(n).values()) > 2
    print([k for k in range(145) if ok(k)]) # Michael S. Branicky, Sep 10 2022
    
  • Python
    from math import isqrt
    from sympy import primepi, primerange
    def A033942(n):
        def f(x): return int(n+primepi(x)+sum(primepi(x//k)-a for a,k in enumerate(primerange(isqrt(x)+1))))
        kmin, kmax = 1,2
        while f(kmax) >= kmax:
            kmax <<= 1
        while True:
            kmid = kmax+kmin>>1
            if f(kmid) < kmid:
                kmax = kmid
            else:
                kmin = kmid
            if kmax-kmin <= 1:
                break
        return kmax # Chai Wah Wu, Aug 23 2024

Formula

Numbers of the form Product p_i^e_i with Sum e_i >= 3.
a(n) ~ n. - Charles R Greathouse IV, May 04 2013

Extensions

Corrected by Patrick De Geest, Jun 15 1998

A023891 Sum of composite divisors of n.

Original entry on oeis.org

0, 0, 0, 4, 0, 6, 0, 12, 9, 10, 0, 22, 0, 14, 15, 28, 0, 33, 0, 34, 21, 22, 0, 54, 25, 26, 36, 46, 0, 61, 0, 60, 33, 34, 35, 85, 0, 38, 39, 82, 0, 83, 0, 70, 69, 46, 0, 118, 49, 85, 51, 82, 0, 114, 55, 110, 57, 58, 0, 157, 0, 62, 93, 124, 65, 127, 0, 106, 69, 129, 0
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Array[ Plus @@ (Select[ Divisors[ # ], (!PrimeQ[ # ] && #>1)& ])&, 75 ]
    a[n_] := DivisorSigma[1, n] - Plus @@ FactorInteger[n][[;; , 1]] - 1; a[1] = 0; Array[a, 100] (* Amiram Eldar, Jun 20 2022 *)
  • PARI
    a(n) = sumdiv(n, d, d*!isprime(d)) - 1; \\ Michel Marcus, Jun 12 2019

Formula

a(n) = A023890(n) - 1. - Sean A. Irvine, Jun 11 2019

A035321 Sum of composite divisors of n that are not primes nor prime powers.

Original entry on oeis.org

0, 0, 0, 0, 0, 6, 0, 0, 0, 10, 0, 18, 0, 14, 15, 0, 0, 24, 0, 30, 21, 22, 0, 42, 0, 26, 0, 42, 0, 61, 0, 0, 33, 34, 35, 72, 0, 38, 39, 70, 0, 83, 0, 66, 60, 46, 0, 90, 0, 60, 51, 78, 0, 78, 55, 98, 57, 58, 0, 153, 0, 62, 84, 0, 65, 127, 0, 102, 69, 129, 0, 168, 0, 74, 90, 114, 77
Offset: 1

Views

Author

Keywords

Crossrefs

One less than A178637.

Programs

  • Maple
    pp := array(1..100); for i from 1 to 100 do pp[i] := 0; od: for i from 1 to 25 do for j from 1 to 6 do t1 := ithprime(i)^j; if t1<100 then pp[t1] := 1; fi; od: od: pp[1] := 1; A035321 := proc(n) local i,d,t1,t2; t1 := 0; for d from 1 to n do if n mod d = 0 and pp[d] = 0 then t1 := t1+d; fi; od; t1; end;
  • Mathematica
    Array[ Plus @@ (Select[ Divisors[ # ], (Length[ FactorInteger[ # ] ]>1)& ])&, 80 ]
  • PARI
    A035321(n) = sumdiv(n,d,(omega(d)>1)*(d)); \\ Antti Karttunen, Aug 06 2018

Formula

a(n) = A178637(n) - 1. - Antti Karttunen, Aug 06 2018

Extensions

Description corrected by Jack Brennen, Mar 28 2001

A035322 Sum of composite divisors of n that are less than n and are not primes nor prime powers.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 6, 0, 10, 0, 0, 0, 18, 0, 0, 0, 14, 0, 31, 0, 0, 0, 0, 0, 36, 0, 0, 0, 30, 0, 41, 0, 22, 15, 0, 0, 42, 0, 10, 0, 26, 0, 24, 0, 42, 0, 0, 0, 93, 0, 0, 21, 0, 0, 61, 0, 34, 0, 59, 0, 96, 0, 0, 15, 38, 0, 71, 0, 70, 0, 0, 0, 123, 0, 0, 0, 66, 0
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Table[ Plus @@ Select[ Divisors[ n ], (Length[ FactorInteger[ # ] ]>1 && #Harvey P. Dale, Jan 09 2019 *)

Extensions

Description corrected by Jack Brennen, Mar 28 2001

A048055 Numbers k such that (sum of the nonprime proper divisors of k) - (sum of prime divisors of k) = k.

Original entry on oeis.org

532, 945, 2624, 5704, 6536, 229648, 497696, 652970, 685088, 997408, 1481504, 11177984, 32869504, 52813084, 132612224, 224841856, 2140668416, 2404135424, 2550700288, 6469054976, 9367192064, 19266023936, 23414463358, 31381324288, 45812547584, 55620289024
Offset: 1

Views

Author

Keywords

Comments

From Peter Luschny, Dec 14 2009: (Start)
A term of this sequence is a Zumkeller number (A083207) since the set of its divisors can be partitioned into two disjoint parts so that the sums of the two parts are equal.
1 + sigma*(k) = sigma'(k) + k
sigma*(k) := Sum_{1 < d < k, d|k, d not prime}, (A060278),
sigma'(k) := Sum_{1 < d < k, d|k, d prime}, (A105221). (End)

Examples

			532 = 1 - 2 + 4 - 7 + 14 - 19 + 28 + 38 + 76 + 133 + 266.
		

Crossrefs

Programs

  • Haskell
    import Data.List (partition)
    a048055 n = a048055_list !! (n-1)
    a048055_list = [x | x <- a002808_list,
                   let (us,vs) = partition ((== 1) . a010051) $ a027751_row x,
                   sum us + x == sum vs]
    -- Reinhard Zumkeller, Apr 05 2013
    
  • Maple
    with(numtheory): A048055 := proc(n) local k;
    if sigma(n)=2*(n+add(k,k=select(isprime,divisors(n))))
    then n else NULL fi end: seq(A048055(i),i=1..7000);
    # Peter Luschny, Dec 14 2009
  • Mathematica
    zummableQ[n_] := DivisorSigma[1, n] == 2*(n + Total[Select[Divisors[n], PrimeQ]]); n = 2; A048055 = {}; While[n < 10^6, If[zummableQ[n], Print[n]; AppendTo[A048055, n]]; n++]; A048055 (* Jean-François Alcover, Dec 07 2011, after Peter Luschny *)
  • Python
    from sympy import divisors, primefactors
    A048055 = []
    for n in range(1,10**4):
        s = sum(divisors(n))
        if not s % 2 and 2*n <= s and (s-2*n)/2 == sum(primefactors(n)):
            A048055.append(n) # Chai Wah Wu, Aug 20 2014

Extensions

a(15)-a(19) from Donovan Johnson, Dec 07 2008
a(20)-a(24) from Donovan Johnson, Jul 06 2010
a(25)-a(26) from Donovan Johnson, Feb 09 2012
Showing 1-6 of 6 results.