cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A023888 Sum of prime power divisors of n (1 included).

Original entry on oeis.org

1, 3, 4, 7, 6, 6, 8, 15, 13, 8, 12, 10, 14, 10, 9, 31, 18, 15, 20, 12, 11, 14, 24, 18, 31, 16, 40, 14, 30, 11, 32, 63, 15, 20, 13, 19, 38, 22, 17, 20, 42, 13, 44, 18, 18, 26, 48, 34, 57, 33, 21, 20, 54, 42, 17, 22, 23, 32, 60, 15, 62, 34, 20, 127, 19, 17, 68, 24, 27
Offset: 1

Views

Author

Keywords

Comments

Sum of n-th row of triangle A210208. [Reinhard Zumkeller, Mar 18 2012]

Examples

			For n = 12, set of such divisors is {1, 2, 3, 4}; a(12) = 1+2+3+4 = 10. From
		

Crossrefs

Programs

  • Haskell
    a023888 = sum . a210208_row  -- Reinhard Zumkeller, Mar 18 2012
    
  • Maple
    f:= n -> 1 + add((t[1]^(t[2]+1)-t[1])/(t[1]-1),t=ifactors(n)[2]):
    map(f, [$1..100]); # Robert Israel, Jan 04 2017
  • Mathematica
    Array[ Plus @@ (Select[ Divisors[ # ], (Length[ FactorInteger[ # ] ]<=1)& ])&, 70 ]
  • PARI
    for(n=1,100, s=1; fordiv(n,d, if((ispower(d,,&z)&&isprime(z)) || isprime(d),s+=d)); print1(s,", "))
    
  • PARI
    a(n) = {
      my(f = factor(n), fsz = matsize(f)[1]);
      1 + sum(k = 1, fsz, f[k,1]*(f[k,1]^f[k,2] - 1)\(f[k,1]-1));
    };
    vector(100, n, a(n))  \\ Gheorghe Coserea, Jan 04 2017

Formula

a(n) = A000203(n) - A035321(n) = A023889(n) + 1.
a(1) = 1, a(p) = p+1, a(pq) = p+q+1, a(pq...z) = (p+q+...+z) + 1, a(p^k) = (p^(k+1)-1) / (p-1), for p, q = primes, k = natural numbers, pq...z = product of k (k > 2) distinct primes p, q, ..., z.
G.f.: x/(1 - x) + Sum_{k>=2} floor(1/omega(k))*k*x^k/(1 - x^k), where omega(k) is the number of distinct prime factors (A001221). - Ilya Gutkovskiy, Jan 04 2017

A060278 Sum of composite divisors of n less than n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 10, 0, 0, 0, 12, 0, 15, 0, 14, 0, 0, 0, 30, 0, 0, 9, 18, 0, 31, 0, 28, 0, 0, 0, 49, 0, 0, 0, 42, 0, 41, 0, 26, 24, 0, 0, 70, 0, 35, 0, 30, 0, 60, 0, 54, 0, 0, 0, 97, 0, 0, 30, 60, 0, 61, 0, 38, 0, 59, 0, 117, 0, 0, 40, 42, 0, 71, 0, 98, 36, 0, 0, 127, 0, 0, 0
Offset: 1

Views

Author

Jack Brennen, Mar 28 2001

Keywords

Crossrefs

Programs

  • Haskell
    a060278 1 = 0
    a060278 n = sum $ filter ((== 0) . a010051) $ tail $ a027751_row n
    -- Reinhard Zumkeller, Apr 05 2013
    
  • Maple
    for n from 1 to 300 do s := 0: for j from 2 to n-1 do if isprime(j) then else if n mod j = 0 then s := s+j fi; fi: od: printf(`%d,`,s) od:
  • Mathematica
    Join[{0},Table[Total[Select[Most[Rest[Divisors[n]]],!PrimeQ[#]&]],{n,2,90}]] (* Harvey P. Dale, Oct 25 2011 *)
    a[n_] := DivisorSigma[1, n] - Plus @@ FactorInteger[n][[;; , 1]] - If[PrimeQ[n], 0, n] - 1; a[1] = 0; Array[a, 100] (* Amiram Eldar, Jun 20 2022 *)
  • PARI
    a(n) = sumdiv(n, d, if ((d1) && !isprime(d), d)); \\ Michel Marcus, Jan 13 2020

Formula

From Reinhard Zumkeller, Apr 05 2013: (Start)
a(n) = Sum_{k=2..A000005(n)-1} A010051(A027751(n,k));
a(A037143(n)) = 0;
a(A033942(n)) > 0. (End)

Extensions

More terms from James Sellers and Matthew Conroy, Mar 29 2001

A023891 Sum of composite divisors of n.

Original entry on oeis.org

0, 0, 0, 4, 0, 6, 0, 12, 9, 10, 0, 22, 0, 14, 15, 28, 0, 33, 0, 34, 21, 22, 0, 54, 25, 26, 36, 46, 0, 61, 0, 60, 33, 34, 35, 85, 0, 38, 39, 82, 0, 83, 0, 70, 69, 46, 0, 118, 49, 85, 51, 82, 0, 114, 55, 110, 57, 58, 0, 157, 0, 62, 93, 124, 65, 127, 0, 106, 69, 129, 0
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Array[ Plus @@ (Select[ Divisors[ # ], (!PrimeQ[ # ] && #>1)& ])&, 75 ]
    a[n_] := DivisorSigma[1, n] - Plus @@ FactorInteger[n][[;; , 1]] - 1; a[1] = 0; Array[a, 100] (* Amiram Eldar, Jun 20 2022 *)
  • PARI
    a(n) = sumdiv(n, d, d*!isprime(d)) - 1; \\ Michel Marcus, Jun 12 2019

Formula

a(n) = A023890(n) - 1. - Sean A. Irvine, Jun 11 2019

A035322 Sum of composite divisors of n that are less than n and are not primes nor prime powers.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 6, 0, 10, 0, 0, 0, 18, 0, 0, 0, 14, 0, 31, 0, 0, 0, 0, 0, 36, 0, 0, 0, 30, 0, 41, 0, 22, 15, 0, 0, 42, 0, 10, 0, 26, 0, 24, 0, 42, 0, 0, 0, 93, 0, 0, 21, 0, 0, 61, 0, 34, 0, 59, 0, 96, 0, 0, 15, 38, 0, 71, 0, 70, 0, 0, 0, 123, 0, 0, 0, 66, 0
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Table[ Plus @@ Select[ Divisors[ n ], (Length[ FactorInteger[ # ] ]>1 && #Harvey P. Dale, Jan 09 2019 *)

Extensions

Description corrected by Jack Brennen, Mar 28 2001

A178637 a(n) = sum of divisors d of n such that d is not equal to p^k where p = prime, k >=1.

Original entry on oeis.org

1, 1, 1, 1, 1, 7, 1, 1, 1, 11, 1, 19, 1, 15, 16, 1, 1, 25, 1, 31, 22, 23, 1, 43, 1, 27, 1, 43, 1, 62, 1, 1, 34, 35, 36, 73, 1, 39, 40, 71, 1, 84, 1, 67, 61, 47, 1, 91, 1, 61, 52, 79, 1, 79, 56, 99, 58, 59, 1, 154, 1, 63, 85, 1, 66, 128, 1, 103, 70, 130, 1, 169, 1, 75, 91, 115, 78, 150, 1, 151, 1, 83, 1, 208, 86, 87, 88, 155, 1, 215, 92, 139, 94, 95, 96, 187, 1, 113, 133, 181
Offset: 1

Views

Author

Jaroslav Krizek, Dec 25 2010

Keywords

Examples

			For n = 12, set of such divisors is {1, 6, 12}; a(12) = 1+6+12 = 19.
		

Crossrefs

One more than A035321.
Cf. A000203, A001221 (omega), A023889, A035321.

Programs

  • Mathematica
    Array[Plus @@ (Select[Divisors[#], (Length[FactorInteger[#]] > 1) &]) &, 100] + 1 (* Robert P. P. McKone, Jan 28 2021 *)
  • PARI
    A178637(n) = sumdiv(n,d,(omega(d)!=1)*(d)); \\ Antti Karttunen, Aug 06 2018

Formula

a(n) = A000203(n) - A023889(n) = A035321(n) + 1.
a(1) = 1, a(p) = 1, a(pq) = pq+1, a(pq...z) = [(p+1)*(q+1)*…*(z+1)] - (p+q+...+z), a(p^k) = 1, for p, q = primes, k = natural numbers, pq...z = product of k (k > 2) distinct primes p, q, ..., z.
a(n) = Sum_{d|n} d * (1 - [omega(n) = 1]), where omega is the number of distinct prime factors (A001221) and [ ] is the Iverson bracket. - Wesley Ivan Hurt, Jan 28 2021
Showing 1-5 of 5 results.