A284662
Number of harmonic seed numbers (A035527) whose largest prime factor is the n-th odd prime (A065091).
Original entry on oeis.org
1, 1, 3, 0, 5, 2, 19, 0, 0, 37, 10, 19, 21, 0, 0, 0, 89, 143, 84, 97, 26, 0, 127, 283
Offset: 1
There are 3 harmonic seed numbers whose largest prime factor is A065091(3) = 7 (28, 672 and 30240), thus a(3) = 3.
A001599
Harmonic or Ore numbers: numbers k such that the harmonic mean of the divisors of k is an integer.
Original entry on oeis.org
1, 6, 28, 140, 270, 496, 672, 1638, 2970, 6200, 8128, 8190, 18600, 18620, 27846, 30240, 32760, 55860, 105664, 117800, 167400, 173600, 237510, 242060, 332640, 360360, 539400, 695520, 726180, 753480, 950976, 1089270, 1421280, 1539720
Offset: 1
k=140 has sigma_0(140)=12 divisors with sigma_1(140)=336. The average divisor is 336/12=28, an integer, and divides k: k=5*28, so 140 is in the sequence.
k=496 has sigma_0(496)=10, sigma_1(496)=992: the average divisor 99.2 is not an integer, but k/(sigma_1/sigma_0)=496/99.2=5 is an integer, so 496 is in the sequence.
- G. L. Cohen and Deng Moujie, On a generalization of Ore's harmonic numbers, Nieuw Arch. Wisk. (4), 16 (1998) 161-172.
- Richard K. Guy, Unsolved Problems in Number Theory, 3rd edition, Springer, 2004, Section B2, pp. 74-75.
- W. H. Mills, On a conjecture of Ore, Proc. Number Theory Conf., Boulder CO, 1972, 142-146.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 147.
- Robert G. Wilson v, Table of n, a(n) for n = 1..937 (terms n = 1..170 from T. D. Noe and Klaus Brockhaus)
- Marco Abrate, Stefano Barbero, Umberto Cerruti, and Nadir Murru, The Biharmonic mean, arXiv:1601.03081 [math.NT], 2016.
- Abiodun E. Adeyemi, A Study of @-numbers, arXiv:1906.05798 [math.NT], 2019.
- Ivan Borysiuk, Conjectured to be the 10000 smallest Ore numbers
- Graeme L. Cohen, Email to N. J. A. Sloane, Apr. 1994.
- Graeme L. Cohen, Numbers whose positive divisors have small integral harmonic mean, Mathematics of Computation, Vol. 66, No. 218, (1997), pp. 883-891.
- Graeme L. Cohen and Ronald M. Sorli, Harmonic seeds, Fibonacci Quart., Vol. 36, No. 5 (1998), pp. 386-390; errata, 39 (2001) 4.
- Graeme L. Cohen and Ronald M. Sorli, Odd harmonic numbers exceed 10^24, Math. Comp., Vol. 79, No. 272 (2010), pp. 2451-2460.
- Mariano Garcia, On numbers with integral harmonic mean, Amer. Math. Monthly, Vol. 61, No. 2 (1954), pp. 89-96.
- Takeshi Goto, All harmonic numbers less than 10^14.
- Takeshi Goto, Table of a(n) for n = 1..937.
- T. Goto and S. Shibata, All numbers whose positive divisors have integral harmonic mean up to 300, Math. Comput., Vol. 73, No. 245 (2004), pp. 475-491.
- Richard K. Guy, Letter to N. J. A. Sloane with attachment, Jun. 1991.
- Hans-Joachim Kanold, Über das harmonische Mittel der Teiler einer natürlichen Zahl, Math. Ann., Vol. 133 (1957), pp. 371-374.
- Oystein Ore, On the averages of the divisors of a number, Amer. Math. Monthly, Vol. 55, No. 10 (1948), pp. 615-619.
- Oystein Ore, On the averages of the divisors of a number. (annotated scanned copy)
- Carl Pomerance, On a Problem of Ore: Harmonic Numbers, unpublished manuscript, 1973; abstract *709-A5, Notices of the American Mathematical Society, Vol. 20, 1973, page A-648, entire volume.
- Eric Weisstein's World of Mathematics, Harmonic Mean.
- Eric Weisstein's World of Mathematics, Harmonic Divisor Number.
- Wikipedia, Harmonic mean.
- Wikipedia, Harmonic divisor number.
- Andreas and Eleni Zachariou, Perfect, semi-perfect and Ore numbers, Bull. Soc. Math. Grèce (New Ser.), Vol. 13, No. 13A (1972), pp. 12-22; alternative link.
- Index entries for sequences where any odd perfect numbers must occur
See
A003601 for analogs referring to arithmetic mean and
A000290 for geometric mean of divisors.
sigma_0(n) (or tau(n)) is the number of divisors of n (
A000005).
sigma_1(n) (or sigma(n)) is the sum of the divisors of n (
A000203).
-
Concatenation([1],Filtered([2,4..2000000],n->IsInt(n*Tau(n)/Sigma(n)))); # Muniru A Asiru, Nov 26 2018
-
import Data.Ratio (denominator)
import Data.List (genericLength)
a001599 n = a001599_list !! (n-1)
a001599_list = filter ((== 1) . denominator . hm) [1..] where
hm x = genericLength ds * recip (sum $ map (recip . fromIntegral) ds)
where ds = a027750_row x
-- Reinhard Zumkeller, Jun 04 2013, Jan 20 2012
-
q:= (p,k) -> p^k*(p-1)*(k+1)/(p^(k+1)-1):
filter:= proc(n) local t; mul(q(op(t)),t=ifactors(n)[2])::integer end proc:
select(filter, [$1..10^6]); # Robert Israel, Jan 14 2016
-
Do[ If[ IntegerQ[ n*DivisorSigma[0, n]/ DivisorSigma[1, n]], Print[n]], {n, 1, 1550000}]
Select[Range[1600000],IntegerQ[HarmonicMean[Divisors[#]]]&] (* Harvey P. Dale, Oct 20 2012 *)
-
a(n)=if(n<0,0,n=a(n-1);until(0==(sigma(n,0)*n)%sigma(n,1),n++);n) /* Michael Somos, Feb 06 2004 */
-
from sympy import divisor_sigma as sigma
def ok(n): return (n*sigma(n, 0))%sigma(n, 1) == 0
print([n for n in range(1, 10**4) if ok(n)]) # Michael S. Branicky, Jan 06 2021
-
from itertools import count, islice
from functools import reduce
from math import prod
from sympy import factorint
def A001599_gen(startvalue=1): # generator of terms >= startvalue
for n in count(max(startvalue,1)):
f = factorint(n)
s = prod((p**(e+1)-1)//(p-1) for p, e in f.items())
if not reduce(lambda x,y:x*y%s,(e+1 for e in f.values()),1)*n%s:
yield n
A001599_list = list(islice(A001599_gen(),20)) # Chai Wah Wu, Feb 14 2023
Showing 1-2 of 2 results.
Comments