cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 47 results. Next

A049085 Irregular table T(n,k) = maximal part of the k-th partition of n, when listed in Abramowitz-Stegun order (as in A036043).

Original entry on oeis.org

0, 1, 2, 1, 3, 2, 1, 4, 3, 2, 2, 1, 5, 4, 3, 3, 2, 2, 1, 6, 5, 4, 3, 4, 3, 2, 3, 2, 2, 1, 7, 6, 5, 4, 5, 4, 3, 3, 4, 3, 2, 3, 2, 2, 1, 8, 7, 6, 5, 4, 6, 5, 4, 4, 3, 5, 4, 3, 3, 2, 4, 3, 2, 3, 2, 2, 1, 9, 8, 7, 6, 5, 7, 6, 5, 4, 5, 4, 3, 6, 5, 4, 4, 3, 3, 5, 4, 3, 3, 2, 4, 3, 2, 3, 2, 2, 1, 10, 9, 8, 7, 6, 5, 8, 7, 6
Offset: 0

Views

Author

Keywords

Comments

a(0) = 0 by convention. - Franklin T. Adams-Watters, Jun 24 2014
Like A036043 this is important for calculating sequences defined over the numeric partitions, cf. A000041. For example, the triangular array A019575 can be calculated using A036042 and this sequence.
The row sums are A006128. - Johannes W. Meijer, Jun 21 2010
The name is correct if the partitions are read in reverse, so that the parts are weakly increasing. The version for non-reversed partitions is A334441. - Gus Wiseman, May 21 2020

Examples

			Rows:
  [0];
  [1];
  [2,1];
  [3,2,1];
  [4,3,2,2,1];
  [5,4,3,3,2,2,1];
  ...
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 831.

Crossrefs

Row lengths are A000041.
Row sums are A006128.
The length of the partition is A036043.
The number of distinct elements of the partition is A103921.
The Heinz number of the partition is A185974.
The version ignoring length is A194546.
The version for non-reversed partitions is A334441.
Lexicographically ordered reversed partitions are A026791.
Reversed partitions in Abramowitz-Stegun order are A036036.
Reverse-lexicographically ordered partitions are A080577.
Partitions in Abramowitz-Stegun order are A334301.

Programs

  • Maple
    with(combinat):
    nmax:=9:
    for n from 1 to nmax do
       y(n):=numbpart(n):
       P(n):=partition(n):
       for k from 1 to y(n) do
          B(k):=P(n)[k]
       od:
       for k from 1 to y(n) do
          s:=0: j:=0:
          while sJohannes W. Meijer, Jun 21 2010
  • Mathematica
    Table[If[n==0,{0},Max/@Sort[Reverse/@IntegerPartitions[n]]],{n,0,8}] (* Gus Wiseman, May 21 2020 *)
  • PARI
    A049085(n,k)=if(n,partitions(n)[k][1],0) \\ M. F. Hasler, Jun 06 2018

Extensions

More terms from Wolfdieter Lang, Apr 28 2005
a(0) inserted by Franklin T. Adams-Watters, Jun 24 2014

A178803 Write the factorial of each term in A036043(n).

Original entry on oeis.org

1, 1, 2, 1, 2, 6, 1, 2, 2, 6, 24, 1, 2, 2, 6, 6, 24, 120, 1, 2, 2, 2, 6, 6, 6, 24, 24, 120, 720, 1, 2, 2, 2, 6, 6, 6, 6, 24, 24, 24, 120, 120, 720, 5040, 1, 2, 2, 2, 2, 6, 6, 6, 6, 6, 24, 24, 24, 24, 24, 120, 120, 120, 720, 720, 5040, 40320, 1, 2, 2, 2, 2, 6, 6, 6, 6, 6, 6, 6, 24, 24, 24, 24, 24
Offset: 1

Views

Author

Alford Arnold, Jun 17 2010

Keywords

Comments

Sequence A036043 measures the length of numeric partitions.

Examples

			A036043 begins 1 1 2 1 2 3 1 2 2 3 4 1 2 2 3 3 4 5 ...
so this table begins 1 1 2 1 2 6 1 2 2 6 24 ...
1;
1, 2;
1, 2, 6;
1, 2, 2, 6, 24;
1, 2, 2, 6, 6, 24, 120;
1, 2, 2, 2, 6, 6, 6, 24, 24, 120, 720;
1, 2, 2, 2, 6, 6, 6, 6, 24, 24, 24, 120, 120, 720, 5040;
1, 2, 2, 2, 2, 6, 6, 6, 6, 6, 24, 24, 24, 24, 24, 120, 120, 120, 720, 720, 5040, 40320;
		

Crossrefs

Cf. A000041 (shape sequence), A000142 (factorials), A036043, A101880 (row sums).

Programs

  • SageMath
    def A178803_row(n):
        return [factorial(len(p)) for k in (0..n) for p in Partitions(n, length=k)]
    for n in (0..10): print(A178803_row(n)) # Peter Luschny, Nov 02 2019

A179864 The unrestricted partition statistic defined by A049085(n,k)+A036043(n,k)- 1.

Original entry on oeis.org

1, 2, 2, 3, 3, 3, 4, 4, 3, 4, 4, 5, 5, 4, 5, 4, 5, 5, 6, 6, 5, 4, 6, 5, 4, 6, 5, 6, 6, 7, 7, 6, 5, 7, 6, 5, 5, 7, 6, 5, 7, 6, 7, 7, 8, 8, 7, 6, 5, 8, 7, 6, 6, 5, 8, 7, 6, 6, 5, 8, 7, 6, 8, 7, 8, 8, 9, 9, 8, 7, 6, 9, 8, 7, 6, 7, 6, 5, 9, 8, 7, 7, 6, 6, 9, 8, 7, 7, 6, 9, 8, 7, 9, 8, 9, 9, 10, 10, 9, 8, 7, 6, 10, 9, 8
Offset: 1

Views

Author

Alford Arnold, Aug 02 2010

Keywords

Examples

			1;
2,2;
3,3,3;
4,4,3,4,4;
5,5,4,5,4,5,5;
6,6,5,4,6,5,4,6,5,6,6;
7,7,6,5,7,6,5,5,7,6,5,7,6,7,7;
		

Crossrefs

Cf. A000041 (row lengths), A179862 (row sums), A105805 (the rank statistic)

A181417 Irregular triangle T(n,k) = binomial(n-1,m-1)*m!*A036040(n,k), where m=A036043(n,k).

Original entry on oeis.org

1, 1, 2, 1, 12, 6, 1, 24, 18, 108, 24, 1, 40, 80, 360, 540, 960, 120, 1, 60, 150, 100, 900, 3600, 900, 4800, 10800, 9000, 720, 1, 84, 252, 420, 1890, 9450, 6300, 9450, 16800, 100800, 50400, 63000, 189000, 90720, 5040, 1, 112, 392, 784, 490, 3528, 21168, 35280, 26460, 35280, 47040, 352800, 235200, 705600, 88200, 294000, 2352000, 1764000, 846720, 3175200, 987840, 40320, 1, 144, 576, 1344, 2016, 6048, 42336
Offset: 1

Views

Author

Alford Arnold, Oct 22 2010

Keywords

Comments

This is a refinement of the triangle A048743.
Row n has A000041(n) elements.
The sequence can be derived by expanding A007318 and A000142 and using A036040.
For example, row four can be derived using
(1 3 3 3 1) times (1 2 2 6 24) times (1 4 3 6 1) = (1 24 18 108 24)

Examples

			The table begins:
1
1...2
1..12...6
1..24..18..108..24
		

Crossrefs

Cf. A045531 (row sums), A048743, A007318, A036040.

Extensions

Row 6 onwards and definition by R. J. Mathar, Feb 12 2013

A066186 Sum of all parts of all partitions of n.

Original entry on oeis.org

0, 1, 4, 9, 20, 35, 66, 105, 176, 270, 420, 616, 924, 1313, 1890, 2640, 3696, 5049, 6930, 9310, 12540, 16632, 22044, 28865, 37800, 48950, 63336, 81270, 104104, 132385, 168120, 212102, 267168, 334719, 418540, 520905, 647172, 800569, 988570, 1216215, 1493520
Offset: 0

Views

Author

Wouter Meeussen, Dec 15 2001

Keywords

Comments

Sum of the zeroth moments of all partitions of n.
Also the number of one-element transitions from the integer partitions of n to the partitions of n-1 for labeled parts with the assumption that any part z is composed of labeled elements of amount 1, i.e., z = 1_1 + 1_2 + ... + 1_z. Then one can take from z a single element in z different ways. E.g., for n=3 to n=2 we have A066186(3) = 9 and [111] --> [11], [111] --> [11], [111] --> [11], [12] --> [111], [12] --> [111], [12] --> [2], [3] --> 2, [3] --> 2, [3] --> 2. For the unlabeled case, one can take a single element from z in only one way. Then the number of one-element transitions from the integer partitions of n to the partitions of n-1 is given by A000070. E.g., A000070(3) = 4 and for the transition from n=3 to n=2 one has [111] --> [11], [12] --> [11], [12] --> [2], [3] --> [2]. - Thomas Wieder, May 20 2004
Also sum of all parts of all regions of n (Cf. A206437). - Omar E. Pol, Jan 13 2013
From Omar E. Pol, Jan 19 2021: (Start)
Apart from initial zero this is also as follows:
Convolution of A000203 and A000041.
Convolution of A024916 and A002865.
For n >= 1, a(n) is also the number of cells in a symmetric polycube in which the terraces are the symmetric representation of sigma(k), for k = n..1, (cf. A237593) starting from the base and located at the levels A000041(0)..A000041(n-1) respectively. The polycube looks like a symmetric tower (cf. A221529). A dissection is a three-dimensional spiral whose top view is described in A239660. The growth of the volume of the polycube represents each convolution mentioned above. (End)
From Omar E. Pol, Feb 04 2021: (Start)
a(n) is also the sum of all divisors of all positive integers in a sequence with n blocks where the m-th block consists of A000041(n-m) copies of m, with 1 <= m <= n. The mentioned divisors are also all parts of all partitions of n.
Apart from initial zero this is also the convolution of A340793 and A000070. (End)

Examples

			a(3)=9 because the partitions of 3 are: 3, 2+1 and 1+1+1; and (3) + (2+1) + (1+1+1) = 9.
a(4)=20 because A000041(4)=5 and 4*5=20.
		

Crossrefs

Cf. A000041, A093694, A000070, A132825, A001787 (same for ordered partitions), A277029, A000203, A221529, A237593, A239660.
First differences give A138879. - Omar E. Pol, Aug 16 2013

Programs

  • Haskell
    a066186 = sum . concat . ps 1 where
       ps _ 0 = [[]]
       ps i j = [t:ts | t <- [i..j], ts <- ps t (j - t)]
    -- Reinhard Zumkeller, Jul 13 2013
    
  • Maple
    with(combinat): a:= n-> n*numbpart(n): seq(a(n), n=0..50); # Zerinvary Lajos, Apr 25 2007
  • Mathematica
    PartitionsP[ Range[0, 60] ] * Range[0, 60]
  • PARI
    a(n)=numbpart(n)*n \\ Charles R Greathouse IV, Mar 10 2012
    
  • Python
    from sympy import npartitions
    def A066186(n): return n*npartitions(n) # Chai Wah Wu, Oct 22 2023
  • Sage
    [n*Partitions(n).cardinality() for n in range(41)] # Peter Luschny, Jul 29 2014
    

Formula

a(n) = n * A000041(n). - Omar E. Pol, Oct 10 2011
G.f.: x * (d/dx) Product_{k>=1} 1/(1-x^k), i.e., derivative of g.f. for A000041. - Jon Perry, Mar 17 2004 (adjusted to match the offset by Geoffrey Critzer, Nov 29 2014)
Equals A132825 * [1, 2, 3, ...]. - Gary W. Adamson, Sep 02 2007
a(n) = A066967(n) + A066966(n). - Omar E. Pol, Mar 10 2012
a(n) = A207381(n) + A207382(n). - Omar E. Pol, Mar 13 2012
a(n) = A006128(n) + A196087(n). - Omar E. Pol, Apr 22 2012
a(n) = A220909(n)/2. - Omar E. Pol, Jan 13 2013
a(n) = Sum_{k=1..n} A000203(k)*A000041(n-k), n >= 1. - Omar E. Pol, Jan 20 2013
a(n) = Sum_{k=1..n} k*A036043(n,n-k+1). - L. Edson Jeffery, Aug 03 2013
a(n) = Sum_{k=1..n} A024916(k)*A002865(n-k), n >= 1. - Omar E. Pol, Jul 13 2014
a(n) ~ exp(Pi*sqrt(2*n/3))/(4*sqrt(3)) * (1 - (sqrt(3/2)/Pi + Pi/(24*sqrt(6))) / sqrt(n)). - Vaclav Kotesovec, Oct 24 2016
a(n) = Sum_{k=1..n} A340793(k)*A000070(n-k), n >= 1. - Omar E. Pol, Feb 04 2021

Extensions

a(0) added by Franklin T. Adams-Watters, Jul 28 2014

A036036 Triangle read by rows in which row n lists all the parts of all reversed partitions of n, sorted first by length and then lexicographically.

Original entry on oeis.org

1, 2, 1, 1, 3, 1, 2, 1, 1, 1, 4, 1, 3, 2, 2, 1, 1, 2, 1, 1, 1, 1, 5, 1, 4, 2, 3, 1, 1, 3, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 6, 1, 5, 2, 4, 3, 3, 1, 1, 4, 1, 2, 3, 2, 2, 2, 1, 1, 1, 3, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 7, 1, 6, 2, 5, 3, 4, 1, 1, 5, 1, 2, 4, 1, 3, 3, 2, 2, 3, 1, 1, 1
Offset: 1

Views

Author

Keywords

Comments

First differs from A334442 for reversed partitions of 9. Namely, this sequence has (1,4,4) before (2,2,5), while A334442 has (2,2,5) before (1,4,4). - Gus Wiseman, May 07 2020
This is the "Abramowitz and Stegun" ordering of the partitions, referenced in numerous other sequences. The partitions are in reverse order of the conjugates of the partitions in Mathematica order (A080577). Each partition is the conjugate of the corresponding partition in Maple order (A080576). - Franklin T. Adams-Watters, Oct 18 2006
The "Abramowitz and Stegun" ordering of the partitions is the graded reflected colexicographic ordering of the partitions. - Daniel Forgues, Jan 19 2011
The "Abramowitz and Stegun" ordering of partitions has been traced back to C. F. Hindenburg, 1779, in the Knuth reference, p. 38. See the Hindenburg link, pp. 77-5 with the listing of the partitions for n=10. This is also mentioned in the P. Luschny link. - Wolfdieter Lang, Apr 04 2011
The "Abramowitz and Stegun" order used here means that the partitions of a given number are listed by increasing number of (nonzero) parts, then by increasing lexicographical order with parts in (weakly) indecreasing order. This differs from n=9 on from A334442 which considers reverse lexicographic order of parts in (weakly) decreasing order. - M. F. Hasler, Jul 12 2015, corrected thanks to Gus Wiseman, May 14 2020
This is the Abramowitz-Stegun ordering of reversed partitions (finite weakly increasing sequences of positive integers). The same ordering of non-reversed partitions is A334301. - Gus Wiseman, May 07 2020

Examples

			1
2; 1,1
3; 1,2; 1,1,1
4; 1,3; 2,2; 1,1,2; 1,1,1,1
5; 1,4; 2,3; 1,1,3; 1,2,2; 1,1,1,2; 1,1,1,1,1;
6; 1,5; 2,4; 3,3; 1,1,4; 1,2,3; 2,2,2; 1,1,1,3; 1,1,2,2; 1,1,1,1,2; 1,1,1,1,1,1;
...
		

References

  • Abramowitz and Stegun, Handbook, p. 831, column labeled "pi".
  • D. Knuth, The Art of Computer Programming, Vol. 4, fascicle 3, 7.2.1.4, Addison-Wesley, 2005.

Crossrefs

See A036037 for the graded colexicographic ordering.
See A080576 for the Maple (graded reflected lexicographic) ordering.
See A080577 for the Mathematica (graded reverse lexicographic) ordering.
See A193073 for the graded lexicographic ordering.
See A228100 for the Fenner-Loizou (binary tree) ordering.
The version ignoring length is A026791.
Same as A036037 with partitions reversed.
The lengths of these partitions are A036043.
The number of distinct parts is A103921.
The corresponding ordering of compositions is A124734.
Showing partitions as Heinz numbers gives A185974.
The version for non-reversed partitions is A334301.
Lexicographically ordered reversed partitions are A026791.
Sorting reversed partitions by Heinz number gives A112798.
The version for revlex instead of lex is A334302.
The version for revlex instead of colex is A334442.

Programs

  • Mathematica
    Join@@Table[Sort[Reverse/@IntegerPartitions[n]],{n,0,8}] (* Gus Wiseman, May 07 2020 *)
    - or -
    colen[f_,c_]:=OrderedQ[{Reverse[f],Reverse[c]}];
    Reverse/@Join@@Table[Sort[IntegerPartitions[n],colen],{n,0,8}] (* Gus Wiseman, May 07 2020 *)
  • PARI
    T036036(n,k)=k&&return(T036036(n)[k]);concat(partitions(n))
    \\ If 2nd arg "k" is not given, return the n-th row as a vector. Assumes PARI version >= 2.7.1. See A193073 for "hand made" code.
    concat(vector(8,n,T036036(n))) \\ to get the "flattened" sequence
    \\ M. F. Hasler, Jul 12 2015

Extensions

Edited by Daniel Forgues, Jan 21 2011
Edited by M. F. Hasler, Jul 12 2015
Name corrected by Gus Wiseman, May 12 2020

A036037 Triangle read by rows in which row n lists all the parts of all the partitions of n, sorted first by length and then colexicographically.

Original entry on oeis.org

1, 2, 1, 1, 3, 2, 1, 1, 1, 1, 4, 3, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 5, 4, 1, 3, 2, 3, 1, 1, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 6, 5, 1, 4, 2, 3, 3, 4, 1, 1, 3, 2, 1, 2, 2, 2, 3, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 6, 1, 5, 2, 4, 3, 5, 1, 1, 4, 2, 1, 3, 3, 1, 3, 2, 2, 4, 1, 1
Offset: 1

Views

Author

Keywords

Comments

First differs from A334439 for partitions of 9. Namely, this sequence has (4,4,1) before (5,2,2), while A334439 has (5,2,2) before (4,4,1). - Gus Wiseman, May 08 2020
This is also a list of all the possible prime signatures of a number, arranged in graded colexicographic ordering. - N. J. A. Sloane, Feb 09 2014
This is also the Abramowitz-Stegun ordering of reversed partitions (A036036) if the partitions are reversed again after sorting. Partitions sorted first by sum and then colexicographically are A211992. - Gus Wiseman, May 08 2020

Examples

			First five rows are:
{{1}}
{{2}, {1, 1}}
{{3}, {2, 1}, {1, 1, 1}}
{{4}, {3, 1}, {2, 2}, {2, 1, 1}, {1, 1, 1, 1}}
{{5}, {4, 1}, {3, 2}, {3, 1, 1}, {2, 2, 1}, {2, 1, 1, 1}, {1, 1, 1, 1, 1}}
Up to the fifth row, this is exactly the same as the reverse lexicographic ordering A080577. The first row which differs is the sixth one, which reads ((6), (5,1), (4,2), (3,3), (4,1,1), (3,2,1), (2,2,2), (3,1,1,1), (2,2,1,1), (2,1,1,1,1), (1,1,1,1,1,1)). - _M. F. Hasler_, Jan 23 2020
From _Gus Wiseman_, May 08 2020: (Start)
The sequence of all partitions begins:
  ()         (3,2)        (2,1,1,1,1)
  (1)        (3,1,1)      (1,1,1,1,1,1)
  (2)        (2,2,1)      (7)
  (1,1)      (2,1,1,1)    (6,1)
  (3)        (1,1,1,1,1)  (5,2)
  (2,1)      (6)          (4,3)
  (1,1,1)    (5,1)        (5,1,1)
  (4)        (4,2)        (4,2,1)
  (3,1)      (3,3)        (3,3,1)
  (2,2)      (4,1,1)      (3,2,2)
  (2,1,1)    (3,2,1)      (4,1,1,1)
  (1,1,1,1)  (2,2,2)      (3,2,1,1)
  (5)        (3,1,1,1)    (2,2,2,1)
  (4,1)      (2,2,1,1)    (3,1,1,1,1)
(End)
		

Crossrefs

See A036036 for the graded reflected colexicographic ("Abramowitz and Stegun" or Hindenburg) ordering.
See A080576 for the graded reflected lexicographic ("Maple") ordering.
See A080577 for the graded reverse lexicographic ("Mathematica") ordering: differs from a(48) on!
See A228100 for the Fenner-Loizou (binary tree) ordering.
See also A036038, A036039, A036040: (multinomial coefficients).
Partition lengths are A036043.
Reversing all partitions gives A036036.
The number of distinct parts is A103921.
Taking Heinz numbers gives A185974.
The version ignoring length is A211992.
The version for revlex instead of colex is A334439.
Lexicographically ordered reversed partitions are A026791.
Reverse-lexicographically ordered partitions are A080577.
Sorting partitions by Heinz number gives A296150.

Programs

  • Mathematica
    Reverse/@Join@@Table[Sort[Reverse/@IntegerPartitions[n]],{n,8}] (* Gus Wiseman, May 08 2020 *)
    - or -
    colen[f_,c_]:=OrderedQ[{Reverse[f],Reverse[c]}];
    Join@@Table[Sort[IntegerPartitions[n],colen],{n,8}] (* Gus Wiseman, May 08 2020 *)

Extensions

Name corrected by Gus Wiseman, May 12 2020
Mathematica programs corrected to reflect offset of one and not zero by Robert Price, Jun 04 2020

A334439 Irregular triangle whose rows are all integer partitions sorted first by sum, then by length, and finally reverse-lexicographically.

Original entry on oeis.org

1, 2, 1, 1, 3, 2, 1, 1, 1, 1, 4, 3, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 5, 4, 1, 3, 2, 3, 1, 1, 2, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 6, 5, 1, 4, 2, 3, 3, 4, 1, 1, 3, 2, 1, 2, 2, 2, 3, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 6, 1, 5, 2, 4, 3, 5, 1, 1
Offset: 0

Views

Author

Gus Wiseman, May 03 2020

Keywords

Comments

First differs from A036037 for partitions of 9. Namely, this sequence has (5,2,2) before (4,4,1), while A036037 has (4,4,1) before (5,2,2).
This is the Abramowitz-Stegun ordering of integer partitions (A334301) except that the finer order is reverse-lexicographic instead of lexicographic. The version for reversed partitions is A334302.

Examples

			The sequence of all partitions begins:
  ()      (32)     (21111)   (22111)    (4211)      (63)
  (1)     (311)    (111111)  (211111)   (3311)      (54)
  (2)     (221)    (7)       (1111111)  (3221)      (711)
  (11)    (2111)   (61)      (8)        (2222)      (621)
  (3)     (11111)  (52)      (71)       (41111)     (531)
  (21)    (6)      (43)      (62)       (32111)     (522)
  (111)   (51)     (511)     (53)       (22211)     (441)
  (4)     (42)     (421)     (44)       (311111)    (432)
  (31)    (33)     (331)     (611)      (221111)    (333)
  (22)    (411)    (322)     (521)      (2111111)   (6111)
  (211)   (321)    (4111)    (431)      (11111111)  (5211)
  (1111)  (222)    (3211)    (422)      (9)         (4311)
  (5)     (3111)   (2221)    (332)      (81)        (4221)
  (41)    (2211)   (31111)   (5111)     (72)        (3321)
This sequence can also be interpreted as the following triangle, whose n-th row is itself a finite triangle with A000041(n) rows.
                  0
                 (1)
               (2)(11)
             (3)(21)(111)
        (4)(31)(22)(211)(1111)
  (5)(41)(32)(311)(221)(2111)(11111)
Showing partitions as their Heinz numbers (see A334438) gives:
   1
   2
   3   4
   5   6   8
   7  10   9  12  16
  11  14  15  20  18  24  32
  13  22  21  25  28  30  27  40  36  48  64
  17  26  33  35  44  42  50  45  56  60  54  80  72  96 128
		

Crossrefs

The version for colex instead of revlex is A036037.
Row lengths are A036043.
Ignoring length gives A080577.
Number of distinct elements in row n appears to be A103921(n).
The version for compositions is A296774.
The Abramowitz-Stegun version (sum/length/lex) is A334301.
The version for reversed partitions is A334302.
Taking Heinz numbers gives A334438.
The version with partitions reversed is A334442.
Lexicographically ordered reversed partitions are A026791.
Lexicographically ordered partitions are A193073.
Sorting partitions by Heinz number gives A296150.

Programs

  • Mathematica
    revlensort[f_,c_]:=If[Length[f]!=Length[c],Length[f]
    				

A185974 Partitions in Abramowitz-Stegun order A036036 mapped one-to-one to positive integers.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 8, 7, 10, 9, 12, 16, 11, 14, 15, 20, 18, 24, 32, 13, 22, 21, 25, 28, 30, 27, 40, 36, 48, 64, 17, 26, 33, 35, 44, 42, 50, 45, 56, 60, 54, 80, 72, 96, 128, 19, 34, 39, 55, 49, 52, 66, 70, 63, 75, 88, 84, 100, 90, 81, 112, 120, 108, 160, 144, 192, 256, 23, 38, 51, 65, 77, 68, 78, 110, 98, 99, 105, 125, 104, 132, 140, 126, 150, 135, 176, 168, 200, 180, 162, 224, 240, 216, 320, 288, 384, 512, 29, 46, 57, 85, 91, 121, 76, 102, 130, 154, 117, 165, 147, 175, 136, 156, 220, 196, 198, 210, 250, 189, 225, 208, 264, 280, 252, 300, 270, 243, 352, 336, 400, 360, 324, 448, 480, 432, 640, 576, 768, 1024
Offset: 0

Views

Author

Wolfdieter Lang, Feb 10 2011

Keywords

Comments

First differs from A334438 (shifted left once) at a(75) = 98, A334438(76) = 99. - Gus Wiseman, May 20 2020
This mapping of the set of all partitions of N >= 0 to {1, 2, 3, ...} (set of natural numbers) is one to one (bijective). The empty partition for N = 0 maps to 1.
A129129 seems to be analogous, except that the partition ordering A080577 is used. This ordering, however, does not care about the number of parts: e.g., 1^2,4 = 4,1^2 comes before 3^2, so a(23)=28 and a(22)=25 are interchanged.
Also Heinz numbers of all reversed integer partitions (finite weakly increasing sequences of positive integers), sorted first by sum, then by length, and finally lexicographically, where the Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). The version for non-reversed partitions is A334433. - Gus Wiseman, May 20 2020

Examples

			a(22) = 25 = prime(3)^2 because the 22nd partition in A-St order is the 2-part partition (3,3) of N = 6, because A026905(5) = 18 < 22 <= A026905(6) = 29.
a(23) = 28 = prime(1)^2*prime(4) corresponds to the partition 1+1+4 = 4+1+1 with three parts, also of N = 6.
From _Gus Wiseman_, May 20 2020: (Start)
Triangle begins:
   1
   2
   3   4
   5   6   8
   7  10   9  12  16
  11  14  15  20  18  24  32
  13  22  21  25  28  30  27  40  36  48  64
  17  26  33  35  44  42  50  45  56  60  54  80  72  96 128
As a triangle of reversed partitions we have:
                             0
                            (1)
                          (2)(11)
                        (3)(12)(111)
                   (4)(13)(22)(112)(1111)
             (5)(14)(23)(113)(122)(1112)(11111)
  (6)(15)(24)(33)(114)(123)(222)(1113)(1122)(11112)(111111)
(End)
		

Crossrefs

Row lengths are A000041.
The constructive version is A036036.
Also Heinz numbers of the partitions in A036037.
The generalization to compositions is A124734.
The version for non-reversed partitions is A334433.
The non-reversed length-insensitive version is A334434.
The opposite version (sum/length/revlex) is A334435.
Ignoring length gives A334437.
Sorting reversed partitions by Heinz number gives A112798.
Partitions in lexicographic order are A193073.
Partitions in colexicographic order are A211992.
Graded Heinz numbers are A215366.

Programs

  • Mathematica
    Join@@Table[Times@@Prime/@#&/@Sort[Reverse/@IntegerPartitions[n]],{n,0,8}] (* Gus Wiseman, May 21 2020 *)
  • PARI
    A185974_row(n)=[vecprod([prime(i)|i<-p])|p<-partitions(n)] \\ below a helper function:
    index_of_partition(n)={for(r=0, oo, my(c = numbpart(r)); n >= c || return([r,n+1]); n -= c)}
    /* A185974(n,k), 1 <= k <= A000041(n), gives the k-th partition of n >= 0; if k is omitted, A185974(n) return the term of index n of the flattened sequence a(n >= 0).
      This function is used in other sequences (such as A122172) which need to access the n-th partition as listed in A-S order. */
    A185974(n, k=index_of_partition(n))=A185974_row(iferr(k[1], E, k=[k,k]; n))[k[2]] \\ (End)

Formula

a(n) = Product_{j=1..N(n)} p(j)^e(j), with p(j):=A000040(j) (j-th prime), and the exponent e(j) >= 0 of the part j in the n-th partition written in Abramowitz-Stegun (A-St) order, indicated in A036036. Note that j^0 is not 1 but has to be omitted in the partition. N(n) is the index (argument) of the smallest A026905-number greater than or equal to n (the index of the A026905-ceiling of n).
From Gus Wiseman, May 21 2020: (Start)
A001221(a(n)) = A103921(n).
A001222(a(n)) = A036043(n).
A056239(a(n)) = A036042(n).
A061395(a(n)) = A049085(n).
(End)

Extensions

Examples edited by M. F. Hasler, Jan 07 2024

A334301 Irregular triangle read by rows where row k is the k-th integer partition, if partitions are sorted first by sum, then by length, and finally lexicographically.

Original entry on oeis.org

1, 2, 1, 1, 3, 2, 1, 1, 1, 1, 4, 2, 2, 3, 1, 2, 1, 1, 1, 1, 1, 1, 5, 3, 2, 4, 1, 2, 2, 1, 3, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 6, 3, 3, 4, 2, 5, 1, 2, 2, 2, 3, 2, 1, 4, 1, 1, 2, 2, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 7, 4, 3, 5, 2, 6, 1, 3, 2, 2
Offset: 0

Views

Author

Gus Wiseman, Apr 29 2020

Keywords

Comments

This is the Abramowitz-Stegun ordering of integer partitions when they are read in the usual (weakly decreasing) order. The case of reversed (weakly increasing) partitions is A036036.

Examples

			The sequence of all partitions in Abramowitz-Stegun order begins:
  ()      (41)     (21111)   (31111)    (3221)
  (1)     (221)    (111111)  (211111)   (3311)
  (2)     (311)    (7)       (1111111)  (4211)
  (11)    (2111)   (43)      (8)        (5111)
  (3)     (11111)  (52)      (44)       (22211)
  (21)    (6)      (61)      (53)       (32111)
  (111)   (33)     (322)     (62)       (41111)
  (4)     (42)     (331)     (71)       (221111)
  (22)    (51)     (421)     (332)      (311111)
  (31)    (222)    (511)     (422)      (2111111)
  (211)   (321)    (2221)    (431)      (11111111)
  (1111)  (411)    (3211)    (521)      (9)
  (5)     (2211)   (4111)    (611)      (54)
  (32)    (3111)   (22111)   (2222)     (63)
This sequence can also be interpreted as the following triangle, whose n-th row is itself a finite triangle with A000041(n) rows.
                            0
                           (1)
                        (2) (1,1)
                    (3) (2,1) (1,1,1)
            (4) (2,2) (3,1) (2,1,1) (1,1,1,1)
  (5) (3,2) (4,1) (2,2,1) (3,1,1) (2,1,1,1) (1,1,1,1,1)
Showing partitions as their Heinz numbers (see A334433) gives:
   1
   2
   3   4
   5   6   8
   7   9  10  12  16
  11  15  14  18  20  24  32
  13  25  21  22  27  30  28  36  40  48  64
  17  35  33  26  45  50  42  44  54  60  56  72  80  96 128
		

Crossrefs

Lexicographically ordered reversed partitions are A026791.
The version for reversed partitions (sum/length/lex) is A036036.
Row lengths are A036043.
Reverse-lexicographically ordered partitions are A080577.
The version for compositions is A124734.
Lexicographically ordered partitions are A193073.
Sorting by Heinz number gives A296150, or A112798 for reversed partitions.
Sorting first by sum, then by Heinz number gives A215366.
Reversed partitions under the dual ordering (sum/length/revlex) are A334302.
Taking Heinz numbers gives A334433.
The reverse-lexicographic version is A334439 (not A036037).

Programs

  • Mathematica
    Join@@Table[Sort[IntegerPartitions[n]],{n,0,8}]
Showing 1-10 of 47 results. Next