cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A058798 a(n) = n*a(n-1) - a(n-2) with a(0) = 0, a(1) = 1.

Original entry on oeis.org

0, 1, 2, 5, 18, 85, 492, 3359, 26380, 234061, 2314230, 25222469, 300355398, 3879397705, 54011212472, 806288789375, 12846609417528, 217586071308601, 3903702674137290, 73952764737299909, 1475151592071860890
Offset: 0

Views

Author

Christian G. Bower, Dec 02 2000

Keywords

Comments

Note that a(n) = (a(n-1) + a(n+1))/(n+1). - T. D. Noe, Oct 12 2012; corrected by Gary Detlefs, Oct 26 2018
a(n) = log_2(A073888(n)) = log_3(A073889(n)).
a(n) equals minus the determinant of M(n+2) where M(n) is the n X n symmetric tridiagonal matrix with entries 1 just above and below its diagonal and diagonal entries 0, 1, 2, .., n-1. Example: M(4)=matrix([[0, 1, 0, 0], [1, 1, 1, 0], [0, 1, 2, 1], [0, 0, 1, 3]]). - Roland Bacher, Jun 19 2001
a(n) = A221913(n,-1), n>=1, is the numerator sequence of the n-th approximation of the continued fraction -(0 + K_{k>=1} (-1/k)) = 1/(1-1/(2-1/(3-1/(4-... The corresponding denominator sequence is A058797(n). - Wolfdieter Lang, Mar 08 2013
The recurrence equation a(n+1) = (A*n + B)*a(n) + C*a(n-1) with the initial conditions a(0) = 0, a(1) = 1 has the solution a(n) = Sum_{k = 0..floor((n-1)/2)} C^k*binomial(n-k-1,k)*( Product_{j = 1..n-2k-1} (k+j)*A + B ). This is the case A = 1, B = 1, C = -1. - Peter Bala, Aug 01 2013

Examples

			Continued fraction approximation 1/(1-1/(2-1/(3-1/4))) = 18/7 = a(4)/A058797(4). - _Wolfdieter Lang_, Mar 08 2013
		

Crossrefs

Column 1 of A007754.
Cf. A073888, A073889, A221913 (alternating row sums).

Programs

  • GAP
    a:=[1,2];; for n in [3..25] do a[n]:=n*a[n-1]-a[n-2]; od; Concatenation([0], a); # Muniru A Asiru, Oct 26 2018
    
  • Magma
    [0] cat [n le 2 select n else n*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Sep 22 2016
    
  • Mathematica
    t = {0, 1}; Do[AppendTo[t, n*t[[-1]] - t[[-2]]], {n, 2, 25}]; t (* T. D. Noe, Oct 12 2012 *)
    nxt[{n_,a_,b_}]:={n+1,b,b*(n+1)-a}; Transpose[NestList[nxt,{1,0,1},20]] [[2]] (* Harvey P. Dale, Nov 30 2015 *)
  • PARI
    m=30; v=concat([1,2], vector(m-2)); for(n=3, m, v[n] = n*v[n-1]-v[n-2]); concat(0, v) \\ G. C. Greubel, Nov 24 2018
  • Sage
    def A058798(n):
        if n < 3: return n
        return hypergeometric([1/2-n/2, 1-n/2],[2, 1-n, -n], -4)*factorial(n)
    [simplify(A058798(n)) for n in (0..20)] # Peter Luschny, Sep 10 2014
    

Formula

a(n) = Sum_{k = 0..floor((n-1)/2)} (-1)^k*binomial(n-k-1,k)*(n-k)!/(k+1)!. - Peter Bala, Aug 01 2013
a(n) = A058797(n+1) + A058799(n-1). - Henry Bottomley, Feb 28 2001
a(n) = Pi*(BesselY(1, 2)*BesselJ(n+1, 2) - BesselJ(1,2)* BesselY(n+1,2)). See the Abramowitz-Stegun reference given under A103921, p. 361 eq. 9.1.27 (first line with Y, J and z=2) and p. 360, eq. 9.1.16 (Wronskian). - Wolfdieter Lang, Mar 05 2013
Limit_{n->oo} a(n)/n! = BesselJ(1,2) = 0.576724807756873... See a comment on asymptotics under A084950.
a(n) = n!*hypergeometric([1/2-n/2, 1-n/2], [2, 1-n, -n], -4) for n >= 2. - Peter Luschny, Sep 10 2014

Extensions

New description from Amarnath Murthy, Aug 17 2002

A036243 Denominator of fraction equal to the continued fraction [ 0, 2, 4, ...2n ].

Original entry on oeis.org

1, 2, 9, 56, 457, 4626, 55969, 788192, 12667041, 228794930, 4588565641, 101177239032, 2432842302409, 63355077101666, 1776375001149057, 53354605111573376, 1709123738571497089, 58163561716542474402, 2095597345534100575561
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A036242 (numerator), A369585.

Programs

  • Maple
    b := n -> BesselK(n,1)*BesselI(0,1)-(-1)^n*BesselI(n,1)* BesselK(0,1);
    A036243 := n -> b(n+1):
    seq(simplify(A036243(n)), n=0..18); # Peter Luschny, Sep 14 2014
  • Mathematica
    Table[Denominator[FromContinuedFraction[Range[0,2n,2]]],{n,0,20}] (* Harvey P. Dale, Feb 18 2016 *)
  • PARI
    a(n)=contfracpnqn(vector(n+1,i,2*i-2))[2,1];
    vector(22,n,a(n-1)) \\ M. F. Hasler, Feb 08 2011; edited by Michel Marcus, Feb 12 2024

Formula

a(n) = b(n+1) where b(n) = K(n,1)*I(0,1) - (-1)^n*I(n,1)*K(0,1), K(n,x) and I(n,x) Bessel functions. - Peter Luschny, Sep 14 2014
a(n) = Sum_{0..n} |A369585(n)|. - Peter Luschny, Jan 30 2024
a(n) = 2*n*a(n-1) + a(n-2). - Christian Krause, Aug 18 2024

Extensions

a(0) = 1 prepended by Peter Luschny, Jan 30 2024

A246658 Triangle read by rows: T(n,k) = K(n,1)*I(k,1) - (-1)^(n+k)*I(n,1)* K(k,1), where I(n,x) and K(n,x) are Bessel functions; 0<=k<=n.

Original entry on oeis.org

0, 1, 0, 2, 1, 0, 9, 4, 1, 0, 56, 25, 6, 1, 0, 457, 204, 49, 8, 1, 0, 4626, 2065, 496, 81, 10, 1, 0, 55969, 24984, 6001, 980, 121, 12, 1, 0, 788192, 351841, 84510, 13801, 1704, 169, 14, 1, 0, 12667041, 5654440, 1358161, 221796, 27385, 2716, 225, 16, 1, 0
Offset: 0

Views

Author

Peter Luschny, Sep 14 2014

Keywords

Examples

			     0;
     1,      0;
     2,      1,     0;
     9,      4,     1,     0;
    56,     25,     6,     1,    0;
   457,    204,    49,     8,    1,   0;
  4626,   2065,   496,    81,   10,   1,  0;
55969,  24984,  6001,   980,  121,  12,  1, 0;
788192, 351841, 84510, 13801, 1704, 169, 14, 1, 0;
		

Crossrefs

Programs

  • Maple
    T := (n, k) -> BesselK(n,1)*BesselI(k,1) - (-1)^(n+k)*BesselI(n,1)* BesselK(k,1);
    seq(lprint(seq(round(evalf(T(n, k), 99)), k=0..n)), n=0..8);
  • Sage
    T = lambda n, k: bessel_K(n,1)*bessel_I(k,1) - (-1)^(n+k)*bessel_I(n,1)* bessel_K(k,1)
    for n in range(9): [T(n,k).n().round() for k in (0..n)]

Formula

T(n, 0) = A036243(n-1) for n>=2.
T(n, 1) = A036242(n-1) for n>=2.
Showing 1-3 of 3 results.