cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A036244 Denominator of continued fraction given by C(n) = [ 1; 3, 5, 7, ...(2n-1)].

Original entry on oeis.org

1, 3, 16, 115, 1051, 11676, 152839, 2304261, 39325276, 749484505, 15778499881, 363654981768, 9107153044081, 246256787171955, 7150553981030776, 221913430199126011, 7330293750552189139, 256782194699525745876, 9508271497633004786551, 371079370602386712421365
Offset: 1

Views

Author

Keywords

Comments

Denominators of convergents to coth(1) = 1.313035... = A073747.
Convergents: 1/1, 4/3, 21/16, 151/115, ... - Michael Somos, Sep 27 2017

Examples

			G.f. = x + 3*x^2 + 16*x^3 + 115*x^4 + 1051*x^5 + 11676*x^6 + 152839*x^7 + ...
		

Crossrefs

Numerators are sequence A025164. A058798.

Programs

  • Magma
    I:=[1,3]; [n le 2 select I[n] else (2*n-1)*Self(n-1)+Self(n-2): n in [1..30]]; // Vincenzo Librandi, Apr 19 2015
  • Maple
    seq(denom(numtheory:-cfrac([seq(2*i-1,i=1..n)])),n=1..50); # Robert Israel, Apr 19 2015
  • Mathematica
    Rest[CoefficientList[Series[(E^(1-(1-2*x)^(1/2))/2 - E^(-1+(1-2*x)^(1/2))/2) / (1-2*x)^(1/2), {x, 0, 20}], x]* Range[0, 20]!] (* Vaclav Kotesovec, Oct 05 2013 *)
    a[ n_ ] := a[n] =a[n-2]+(2 n-1) a[n-1]; a[0] := 0; a[1] := 1.  RecurrenceTable[{a[0]==0, a[1]==1, a[n]==a[n-2]+(2n-1)a[n-1]}, a, {n, 20}] (* G. C. Greubel,Apr 23 2015 *)
    a[ n_] := (BesselK[ 1/2, 1] BesselI[ n + 1/2, -1] - BesselI[ 1/2, -1] BesselK[n + 1/2, 1])  I // FunctionExpand // Simplify; (* Michael Somos, Sep 27 2017 *)
    Table[FromContinuedFraction[Range[1,2n+1,2]],{n,0,20}]//Denominator (* Harvey P. Dale, May 06 2018 *)
    Convergents[Coth[1], 20] // Denominator (* Jean-François Alcover, Jun 15 2019 *)
  • Sage
    def A036244(n):
        if n == 1: return 1
        return 2^n*gamma(n+1/2)*hypergeometric([1/2-n/2, 1-n/2], [3/2, 1/2-n, 1-n], 1)/sqrt(pi)
    [round(A036244(n).n(100)) for n in (1..20)] # Peter Luschny, Sep 11 2014
    

Formula

a(n) = a(n-1)*(2*n-1) + a(n-2); a(0) = 0, a(1) = 1.
E.g.f.: sinh(1-(1-2*x)^(1/2))/(1-2*x)^(1/2). - Vladeta Jovovic, Jan 30 2004
E.g.f.: cosh(1-(1-2*x)^(1/2))/(1-2*x) + sinh(1-(1-2*x)^(1/2))/((1-2*x)^(3/2)).
E.g.f. G(0)/(1-2*x) where G(k)= 1 + 2*x/((2*k+1)*(1-2*x+sqrt(1-2*x))+(2*k+1)*(4*x^2-2*x)/(-1+2*x+sqrt(1-2*x) + (2*k+2)/G(k+1))); (continued fraction, 3rd kind, 3-step). - Sergei N. Gladkovskii, Jul 01 2012
a(n) = Sum_{k=0..floor((n-1)/2)} 2^(n-2*k-1)*(n-2*k-1)!*binomial(n-k-1,k)*binomial(n-k-1/2,k+1/2). Cf. A058798. - Peter Bala, Aug 01 2013
a(n) ~ (exp(2)-1)*2^(n-1/2)*n^n/exp(n+1). - Vaclav Kotesovec, Oct 05 2013
a(n) = A001147(n)*hypergeometric([1/2-n/2, 1-n/2], [3/2, 1/2-n, 1-n], 1) for n >= 2. - Peter Luschny, Sep 11 2014
a(n) = i*(BesselK[1/2,1]*BesselI[n+1/2,-1] - BesselI[1/2,-1]*BesselK[n+1/2,1]) for n>=0 (where a(0) = 0). - G. C. Greubel, Apr 18 2015
a(n) = A025164(-1-n) for all n in Z. - Michael Somos, Sep 27 2017

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), May 15 2001
More terms from Benoit Cloitre, Dec 20 2002
More terms from Vladeta Jovovic, Jan 30 2004