A036244 Denominator of continued fraction given by C(n) = [ 1; 3, 5, 7, ...(2n-1)].
1, 3, 16, 115, 1051, 11676, 152839, 2304261, 39325276, 749484505, 15778499881, 363654981768, 9107153044081, 246256787171955, 7150553981030776, 221913430199126011, 7330293750552189139, 256782194699525745876, 9508271497633004786551, 371079370602386712421365
Offset: 1
Examples
G.f. = x + 3*x^2 + 16*x^3 + 115*x^4 + 1051*x^5 + 11676*x^6 + 152839*x^7 + ...
Links
- Robert Israel, Table of n, a(n) for n = 1..369
Programs
-
Magma
I:=[1,3]; [n le 2 select I[n] else (2*n-1)*Self(n-1)+Self(n-2): n in [1..30]]; // Vincenzo Librandi, Apr 19 2015
-
Maple
seq(denom(numtheory:-cfrac([seq(2*i-1,i=1..n)])),n=1..50); # Robert Israel, Apr 19 2015
-
Mathematica
Rest[CoefficientList[Series[(E^(1-(1-2*x)^(1/2))/2 - E^(-1+(1-2*x)^(1/2))/2) / (1-2*x)^(1/2), {x, 0, 20}], x]* Range[0, 20]!] (* Vaclav Kotesovec, Oct 05 2013 *) a[ n_ ] := a[n] =a[n-2]+(2 n-1) a[n-1]; a[0] := 0; a[1] := 1. RecurrenceTable[{a[0]==0, a[1]==1, a[n]==a[n-2]+(2n-1)a[n-1]}, a, {n, 20}] (* G. C. Greubel,Apr 23 2015 *) a[ n_] := (BesselK[ 1/2, 1] BesselI[ n + 1/2, -1] - BesselI[ 1/2, -1] BesselK[n + 1/2, 1]) I // FunctionExpand // Simplify; (* Michael Somos, Sep 27 2017 *) Table[FromContinuedFraction[Range[1,2n+1,2]],{n,0,20}]//Denominator (* Harvey P. Dale, May 06 2018 *) Convergents[Coth[1], 20] // Denominator (* Jean-François Alcover, Jun 15 2019 *)
-
Sage
def A036244(n): if n == 1: return 1 return 2^n*gamma(n+1/2)*hypergeometric([1/2-n/2, 1-n/2], [3/2, 1/2-n, 1-n], 1)/sqrt(pi) [round(A036244(n).n(100)) for n in (1..20)] # Peter Luschny, Sep 11 2014
Formula
a(n) = a(n-1)*(2*n-1) + a(n-2); a(0) = 0, a(1) = 1.
E.g.f.: sinh(1-(1-2*x)^(1/2))/(1-2*x)^(1/2). - Vladeta Jovovic, Jan 30 2004
E.g.f.: cosh(1-(1-2*x)^(1/2))/(1-2*x) + sinh(1-(1-2*x)^(1/2))/((1-2*x)^(3/2)).
E.g.f. G(0)/(1-2*x) where G(k)= 1 + 2*x/((2*k+1)*(1-2*x+sqrt(1-2*x))+(2*k+1)*(4*x^2-2*x)/(-1+2*x+sqrt(1-2*x) + (2*k+2)/G(k+1))); (continued fraction, 3rd kind, 3-step). - Sergei N. Gladkovskii, Jul 01 2012
a(n) = Sum_{k=0..floor((n-1)/2)} 2^(n-2*k-1)*(n-2*k-1)!*binomial(n-k-1,k)*binomial(n-k-1/2,k+1/2). Cf. A058798. - Peter Bala, Aug 01 2013
a(n) ~ (exp(2)-1)*2^(n-1/2)*n^n/exp(n+1). - Vaclav Kotesovec, Oct 05 2013
a(n) = A001147(n)*hypergeometric([1/2-n/2, 1-n/2], [3/2, 1/2-n, 1-n], 1) for n >= 2. - Peter Luschny, Sep 11 2014
a(n) = i*(BesselK[1/2,1]*BesselI[n+1/2,-1] - BesselI[1/2,-1]*BesselK[n+1/2,1]) for n>=0 (where a(0) = 0). - G. C. Greubel, Apr 18 2015
a(n) = A025164(-1-n) for all n in Z. - Michael Somos, Sep 27 2017
Extensions
More terms from Larry Reeves (larryr(AT)acm.org), May 15 2001
More terms from Benoit Cloitre, Dec 20 2002
More terms from Vladeta Jovovic, Jan 30 2004
Comments