A058798
a(n) = n*a(n-1) - a(n-2) with a(0) = 0, a(1) = 1.
Original entry on oeis.org
0, 1, 2, 5, 18, 85, 492, 3359, 26380, 234061, 2314230, 25222469, 300355398, 3879397705, 54011212472, 806288789375, 12846609417528, 217586071308601, 3903702674137290, 73952764737299909, 1475151592071860890
Offset: 0
Continued fraction approximation 1/(1-1/(2-1/(3-1/4))) = 18/7 = a(4)/A058797(4). - _Wolfdieter Lang_, Mar 08 2013
Other recurrences of this type:
A001040,
A036242,
A036244,
A053983,
A053984,
A053987,
A058307,
A058308,
A058309,
A058797,
A058799,
A075374,
A106174,
A121323,
A121351,
A121353,
A121354,
A222468,
A222470.
-
a:=[1,2];; for n in [3..25] do a[n]:=n*a[n-1]-a[n-2]; od; Concatenation([0], a); # Muniru A Asiru, Oct 26 2018
-
[0] cat [n le 2 select n else n*Self(n-1)-Self(n-2): n in [1..30]]; // Vincenzo Librandi, Sep 22 2016
-
t = {0, 1}; Do[AppendTo[t, n*t[[-1]] - t[[-2]]], {n, 2, 25}]; t (* T. D. Noe, Oct 12 2012 *)
nxt[{n_,a_,b_}]:={n+1,b,b*(n+1)-a}; Transpose[NestList[nxt,{1,0,1},20]] [[2]] (* Harvey P. Dale, Nov 30 2015 *)
-
m=30; v=concat([1,2], vector(m-2)); for(n=3, m, v[n] = n*v[n-1]-v[n-2]); concat(0, v) \\ G. C. Greubel, Nov 24 2018
-
def A058798(n):
if n < 3: return n
return hypergeometric([1/2-n/2, 1-n/2],[2, 1-n, -n], -4)*factorial(n)
[simplify(A058798(n)) for n in (0..20)] # Peter Luschny, Sep 10 2014
A053984
a(n) = (2*n-1)*a(n-1) - a(n-2), a(0) = 0, a(1) = 1.
Original entry on oeis.org
0, 1, 3, 14, 95, 841, 9156, 118187, 1763649, 29863846, 565649425, 11848774079, 271956154392, 6787055085721, 182978531160075, 5299590348556454, 164104322274089999, 5410143044696413513, 189190902242100382956, 6994653239913017755859, 272602285454365592095545
Offset: 0
a(10)=565649425 because 1/(1-1/(3-1/(5-1/(7-1/(9-1/(11-1/(13-1/(15-1/(17-1/19))))))))) = 565649425/363199319.
-
[n le 2 select (n-1) else (2*n-3)*Self(n-1)-Self(n-2): n in [1..25] ]; // Vincenzo Librandi, May 12 2015
-
f:= gfun:-rectoproc({a(n)=(2*n-1)*a(n-1)-a(n-2),a(0)=0,a(1)=1},a(n),remember):
map(f, [$0..30]); # Robert Israel, May 14 2015
-
CoefficientList[Series[Sin[1-Sqrt[1-2*x]]/Sqrt[1-2*x], {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Oct 05 2013 *)
RecurrenceTable[{a[n] == (2*n - 1)*a[n - 1] - a[n - 2], a[0] == 0,
a[1] == 1}, a, {n, 0, 50}] (* G. C. Greubel, Jan 22 2017 *)
-
a(n)={if(n<2,n,(2*n-1)*a(n-1)-a(n-2))} \\ Edward Jiang, Sep 10 2014
-
{a(n) = my(a0, a1, s=n<0); if( abs(n) < 2, return(n)); if( n<0, n=-1-n); a0=s; a1=1; for(k=2, n, a2 = (2*k-1)*a1 - a0; a0=a1; a1=a2); (-1)^(s*n) * a1}; /* Michael Somos, Sep 11 2014 */
-
def A053984(n):
if n < 2: return n
return 2^n*gamma(n+1/2)*hypergeometric([1-n/2, 1/2-n/2],[3/2, 1 - n, 1/2 -n], -1) / sqrt(pi)
[round(A053984(n).n(100)) for n in (0..20)] # Peter Luschny, Sep 10 2014
A025164
a(n) = a(n-2) + (2n-1)a(n-1); a(0)=1, a(1)=1.
Original entry on oeis.org
1, 1, 4, 21, 151, 1380, 15331, 200683, 3025576, 51635475, 984099601, 20717727096, 477491822809, 11958013297321, 323343850850476, 9388929687961125, 291380164177645351, 9624934347550257708, 337164082328436665131, 12484695980499706867555, 487240307321817004499776
Offset: 0
G.f. = 1 + x + 4*x^2 + 21*x^3 + 151*x^4 + 1380*x^5 + 15331*x^6 + ...
-
[n le 2 select 1 else (2*n-3)*Self(n-1)+Self(n-2): n in [1..20]]; // Vincenzo Librandi, Apr 22 2015
-
a:= proc(n) option remember;
`if`(n<2, 1, a(n-2) +(2*n-1)*a(n-1))
end:
seq(a(n), n=0..25); # Alois P. Heinz, Sep 17 2014
-
a[ n_ ] := a[n] =a[n-2]+(-1+2 n) a[n-1]; a[0] := 1; a[1] := 1;
RecurrenceTable[{a[0]==a[1]==1,a[n]==a[n-2]+(2n-1)a[n-1]},a,{n,20}] (* Harvey P. Dale, Mar 25 2012 *)
a[ n_] := Round[ (Exp[1] + Exp[-1]) (BesselK[n - 3/2, 1] + (2 n - 1) BesselK[n - 1/2, 1]) / Sqrt[2 Pi]]; (* Michael Somos, Aug 26 2015 (n>=0) *)
a[ n_] := Module[{ y = Sqrt[1 - 2 x]}, n! SeriesCoefficient[ Cosh[y - 1] / y, {x, 0, n}]]; (* Michael Somos, Aug 26 2015 (n>=0) *)
a[ n_] := (BesselK[ 1/2, 1] BesselI[ n + 1/2, -1] - BesselI[ -1/2, -1] BesselK[ n + 1/2, 1]) / I // FunctionExpand // Simplify; (* Michael Somos, Aug 26 2015 *)
Join[{1}, Convergents[Coth[1], 20] // Numerator] (* Jean-François Alcover, Jun 15 2019 *)
-
a(n)={if(n<2,1,a(n-2)+(2*n-1)*a(n-1))} \\ Edward Jiang, Sep 11 2014
-
def A025164(n):
if n == 0: return 1
return sloane.A001147(n)*hypergeometric([-n/2+1/2, -n/2], [1/2, -n, 1/2-n], 1)
[round(A025164(n).n(100)) for n in (0..20)] # Peter Luschny, Sep 11 2014
More terms from Larry Reeves (larryr(AT)acm.org), May 15 2001
Showing 1-3 of 3 results.
Comments