A036561 Nicomachus triangle read by rows, T(n, k) = 2^(n - k)*3^k, for 0 <= k <= n.
1, 2, 3, 4, 6, 9, 8, 12, 18, 27, 16, 24, 36, 54, 81, 32, 48, 72, 108, 162, 243, 64, 96, 144, 216, 324, 486, 729, 128, 192, 288, 432, 648, 972, 1458, 2187, 256, 384, 576, 864, 1296, 1944, 2916, 4374, 6561, 512, 768, 1152, 1728, 2592, 3888, 5832, 8748, 13122, 19683
Offset: 0
Examples
The start of the sequence as a triangular array read by rows: 1 2 3 4 6 9 8 12 18 27 16 24 36 54 81 32 48 72 108 162 243 ... The start of the sequence as a table T(n,k) n, k > 0: 1 2 4 8 16 32 ... 3 6 12 24 48 96 ... 9 18 36 72 144 288 ... 27 54 108 216 432 864 ... 81 162 324 648 1296 2592 ... 243 486 972 1944 3888 7776 ... ... - _Boris Putievskiy_, Jan 08 2013
References
- Jay Kappraff, Beyond Measure, World Scientific, 2002, p. 148.
- Flora R. Levin, The Manual of Harmonics of Nicomachus the Pythagorean, Phanes Press, 1994, p. 114.
Links
- Reinhard Zumkeller and Matthew House, Rows n = 0..300 of triangle, flattened [Rows 0 through 120 were computed by Reinhard Zumkeller; rows 121 through 300 by Matthew House, Jul 09 2015]
- Fred Daniel Kline, How do I convert this Nicomachus' Triangle to one with edges?
- Boris Putievskiy, Transformations [of] Integer Sequences And Pairing Functions arXiv:1212.2732 [math.CO], 2012.
- Pierre de la Ramée (Petrus Ramus), P. Rami Arithmeticae (anno 1569) Liber 2, Cap. XVI "De inventione continue proportionalium" p.46 (leaf 0055) describes this integer triangle in a layout close to the current OEIS 'tabl' layout.
- Marko Riedel, Proof of identity by Egorychev method.
- Thomas Scheuerle, Version of this triangle from Boethius (480-524), Anicius Manlius Severinus Boethius, De institutione arithmetica, Medeltidshandskrift 1 (Mh 1), Lund University Library, early 10th century, page 4r.
- Robert Sedgewick, Analysis of shellsort and related algorithms, Fourth European Symposium on Algorithms, Barcelona, September, 1996.
Crossrefs
Programs
-
Haskell
a036561 n k = a036561_tabf !! n !! k a036561_row n = a036561_tabf !! n a036561_tabf = iterate (\xs@(x:_) -> x * 2 : map (* 3) xs) [1] -- Reinhard Zumkeller, Jun 08 2013
-
Magma
/* As triangle: */ [[(2^(i-j)*3^j)/3: j in [1..i]]: i in [1..10]]; // Vincenzo Librandi, Oct 17 2014
-
Maple
A036561 := proc(n,k): 2^(n-k)*3^k end: seq(seq(A036561(n,k),k=0..n),n=0..9); T := proc(n,k) option remember: if k=0 then 2^n elif k>=1 then procname(n,k-1) + procname(n-1,k-1) fi: end: seq(seq(T(n,k),k=0..n),n=0..9); # Johannes W. Meijer, Sep 22 2010, Sep 10 2011
-
Mathematica
Flatten[Table[ 2^(i-j) 3^j, {i, 0, 12}, {j, 0, i} ]] (* Flatten added by Harvey P. Dale, Jun 07 2011 *)
-
PARI
for(i=0,9,for(j=0,i,print1(3^j<<(i-j)", "))) \\ Charles R Greathouse IV, Dec 22 2011
-
PARI
{T(n, k) = if( k<0 || k>n, 0, 2^(n - k) * 3^k)} /* Michael Somos, May 28 2012 */
Formula
T(n,k) = T(n,k-1) + T(n-1,k-1) for n>=1 and 1<=k<=n with T(n,0) = 2^n for n>=0. - Johannes W. Meijer, Sep 22 2010
T(n,k) = 2^(k-1)*3^(n-1), n, k > 0 read by antidiagonals. - Boris Putievskiy, Jan 08 2013
a(n) = 2^(A004736(n)-1)*3^(A002260(n)-1), n > 0, or a(n) = 2^(j-1)*3^(i-1) n > 0, where i=n-t*(t+1)/2, j=(t*t+3*t+4)/2-n, t=floor[(-1+sqrt(8*n-7))/2]. - Boris Putievskiy, Jan 08 2013
G.f.: 1/((1-2x)(1-3yx)). - Geoffrey Critzer, Jun 23 2016
T(n,k) = (-1)^n * Sum_{q=0..n} (-1)^q * C(k+3*q, q) * C(n+2*q, n-q). - Marko Riedel, Jul 01 2024
Comments