cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A036666 Numbers k such that 5*k + 1 is a square.

Original entry on oeis.org

0, 3, 7, 16, 24, 39, 51, 72, 88, 115, 135, 168, 192, 231, 259, 304, 336, 387, 423, 480, 520, 583, 627, 696, 744, 819, 871, 952, 1008, 1095, 1155, 1248, 1312, 1411, 1479, 1584, 1656, 1767, 1843, 1960, 2040, 2163, 2247, 2376, 2464, 2599, 2691
Offset: 1

Views

Author

N. J. A. Sloane, Dec 11 1999

Keywords

Comments

Third differences are 4, -6, 8, -10, 12, -14, 16, -18, 20, -22, 24, -26, 28, ...
X values of solutions to the equation 5*X^3 + X^2 = Y^2. - Mohamed Bouhamida, Nov 06 2007
Also, numbers 5*i^2 + 2*i for integer i. The characteristic function is A205633(n). - Jason Kimberley, Nov 15 2012
From Gary W. Adamson, Sep 22 2019: (Start)
Match the values a(n) with the squares 5k + 1 as follows:
3,....7,....16,....24,... .a, a, a, a,...
16,...36,....81,...121,... (base).
Then 1/5 in the matching base is equal to .a, a, a,...
Example: 1/5 in base 36 is equal to .7, 7, 7, 7...
Check: 7/36 + 7/36^2 = 259/1296 = .199845...; close to 1/5.
(End)

Crossrefs

Programs

Formula

G.f.: x*(3 + 4*x + 3*x^2) / ((1 - x)*(1 - x^2)).
a(n) has the form ((5*m + 1)^2 - 1)/5 if n is odd; a(n) has the form ((5*m + 4)^2 - 1)/5 if n is even.
a(2*k) = k*(5*k + 2), a(2*k + 1) = 5*k^2 + 8*k + 3. - Mohamed Bouhamida, Nov 06 2007
a(n+1) = n^2 + n + ceiling(n/2)^2. - Gary Detlefs, Feb 23 2010
From Bruno Berselli, Nov 27 2010: (Start)
a(n) = (10*n*(n - 1)+(2*n - 1)*(-1)^n + 1)/8.
5*a(n) + 1 = A047209(n)^2. (End)
a(n) = Sum_{k=0..n} k + A109043(k). - Jon Maiga, Nov 28 2018
E.g.f.: (exp(x)*(1 + 10*x^2) - exp(-x)*(1 + 2*x))/8. - Franck Maminirina Ramaharo, Nov 29 2018
From Amiram Eldar, Mar 15 2022: (Start)
Sum_{n>=2} 1/a(n) = 5/4 - sqrt(1-2/sqrt(5))*Pi/2.
Sum_{n>=2} (-1)^n/a(n) = 5*(log(5)-1)/4 - sqrt(5)*log(phi)/2, where phi is the golden ratio (A001622). (End)

Extensions

Better description and additional formula from Santi Spadaro, Jul 12 2001