cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A037299 Prime substrings of prime numbers in A037272.

Original entry on oeis.org

2, 11, 2, 3, 3, 3, 3, 11, 139, 653, 3863, 5107, 3, 11, 7, 73, 2, 2, 3, 13, 367, 11, 29, 3, 163, 6373, 2, 3, 3, 3, 31, 8308475676071413, 3, 7, 2, 11, 3, 3, 13, 19, 7, 73, 3, 251, 13, 367, 2, 2, 7, 5, 47, 2, 41, 271, 3, 11, 3, 13, 97, 11, 29, 7, 11, 29, 3, 73, 3, 13, 3, 31, 41
Offset: 0

Views

Author

Keywords

Comments

There should be an analogous sequence for A037273 (N. J. A. Sloane).

A037300 Number of prime substrings of prime numbers in A037272.

Original entry on oeis.org

2, 2, 8, 2, 2, 3, 2, 2, 3, 3, 3, 2, 2, 4, 2, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 2, 4, 2, 2, 3, 2, 4
Offset: 0

Views

Author

Keywords

Comments

There should be an analogous sequence for A037273 (N. J. A. Sloane).

A037274 Home primes: for n >= 2, a(n) = the prime that is finally reached when you start with n, concatenate its prime factors (A037276) and repeat until a prime is reached (a(n) = -1 if no prime is ever reached).

Original entry on oeis.org

1, 2, 3, 211, 5, 23, 7, 3331113965338635107, 311, 773, 11, 223, 13, 13367, 1129, 31636373, 17, 233, 19, 3318308475676071413, 37, 211, 23, 331319, 773, 3251, 13367, 227, 29, 547, 31, 241271, 311, 31397, 1129, 71129, 37, 373, 313, 3314192745739, 41, 379, 43, 22815088913, 3411949, 223, 47, 6161791591356884791277
Offset: 1

Views

Author

Keywords

Comments

The initial 1 could have been omitted.
Probabilistic arguments give exactly zero for the chance that the sequence of integers starting at n contains no prime, the expected number of primes being given by a divergent sequence. - J. H. Conway
After over 100 iterations, a(49) is still composite - see A056938 for the latest information.
More terms:
a(50) to a(60) are 3517, 317, 2213, 53, 2333, 773, 37463, 1129, 229, 59, 35149;
a(61) to a(65) are 61, 31237, 337, 1272505013723, 1381321118321175157763339900357651;
a(66) to a(76) are 2311, 67, 3739, 33191, 257, 71, 1119179, 73, 379, 571, 333271.
This is different from A195264. Here 8 = 2^3 -> 222 -> ... -> 3331113965338635107 (a prime), whereas in A195264 8 = 2^3 -> 23 (a prime). - N. J. A. Sloane, Oct 12 2014

Examples

			9 = 3*3 -> 33 = 3*11 -> 311, prime, so a(9) = 311.
The trajectory of 8 is more interesting:
8 ->
2 * 2 * 2 ->
2 * 3 * 37 ->
3 * 19 * 41 ->
3 * 3 * 3 * 7 * 13 * 13 ->
3 * 11123771 ->
7 * 149 * 317 * 941 ->
229 * 31219729 ->
11 * 2084656339 ->
3 * 347 * 911 * 118189 ->
11 * 613 * 496501723 ->
97 * 130517 * 917327 ->
53 * 1832651281459 ->
3 * 3 * 3 * 11 * 139 * 653 * 3863 * 5107
and 3331113965338635107 is prime, so a(8) = 3331113965338635107.
		

References

  • Jeffrey Heleen, Family Numbers: Mathemagical Black Holes, Recreational and Educational Computing, 5:5, pp. 6, 1990.
  • Jeffrey Heleen, Family numbers: Constructing Primes by Prime Factor Splicing, J. Recreational Math., Vol. 28 #2, 1996-97, pp. 116-119.

Crossrefs

Cf. A195264 (use exponents instead of repeating primes).
Cf. A084318 (use only one copy of each prime), A248713 (Fermi-Dirac analog: use unique representation of n>1 as a product of distinct terms of A050376).
Cf. also A120716 and related sequences.

Programs

  • Maple
    b:= n-> parse(cat(sort(map(i-> i[1]$i[2], ifactors(n)[2]))[])):
    a:= n-> `if`(isprime(n) or n=1, n, a(b(n))):
    seq(a(n), n=1..48);  # Alois P. Heinz, Jan 09 2021
  • Mathematica
    f[n_] := FromDigits@ Flatten[ IntegerDigits@ Table[ #[[1]], { #[[2]] }] & /@ FactorInteger@n, 2]; g[n_] := NestWhile[ f@# &, n, !PrimeQ@# &]; g[1] = 1; Array[g, 41] (* Robert G. Wilson v, Sep 22 2007 *)
  • PARI
    step(n)=my(f=factor(n),s="");for(i=1,#f~,for(j=1,f[i,2],s=Str(s,f[i,1]))); eval(s)
    a(n)=if(n<4,return(n)); while(!isprime(n), n=step(n)); n \\ Charles R Greathouse IV, May 14 2015
    
  • Python
    from sympy import factorint, isprime
    def f(n): return int("".join(str(p)*e for p, e in factorint(n).items()))
    def a(n):
        if n == 1: return 1
        fn = n
        while not isprime(fn): fn = f(fn)
        return fn
    print([a(n) for n in range(1, 40)]) # Michael S. Branicky, Jul 11 2022
  • SageMath
    def digitLen(x,n):
        r=0
        while(x>0):
            x//=n
            r+=1
        return r
    def concatPf(x,n):
        r=0
        f=list(factor(x))
        for c in range(len(f)):
            for d in range(f[c][1]):
                r*=(n**digitLen(f[c][0],n))
                r+=f[c][0]
        return r
    def hp(x,n):
        x1=concatPf(x,n)
        while(x1!=x):
            x=x1
            x1=concatPf(x1,n)
        return x
    #example: prints the home prime of 8 in base 10
    print(hp(8,10))
    

Extensions

Corrected and extended by Karl W. Heuer, Sep 30 2003

A037273 Number of steps to reach a prime under "replace n with concatenation of its prime factors", or -1 if no prime is ever reached.

Original entry on oeis.org

-1, 0, 0, 2, 0, 1, 0, 13, 2, 4, 0, 1, 0, 5, 4, 4, 0, 1, 0, 15, 1, 1, 0, 2, 3, 4, 4, 1, 0, 2, 0, 2, 1, 5, 3, 2, 0, 2, 1, 9, 0, 2, 0, 9, 6, 1, 0, 15
Offset: 1

Views

Author

Keywords

Comments

Starting with 49, no prime has been reached after 79 steps.
a(49) > 118, see A056938 and FactorDB link. - Michael S. Branicky, Nov 19 2020

Examples

			13 is already prime, so a(13) = 0.
Starting with 14 we get 14 = 2*7, 27 = 3*3*3, 333 = 3*3*37, 3337 = 47*71, 4771 = 13*367, 13367 is prime; so a(14) = 5.
		

Crossrefs

Programs

  • Haskell
    a037273 1 = -1
    a037273 n = length $ takeWhile ((== 0) . a010051) $
       iterate (\x -> read $ concatMap show $ a027746_row x :: Integer) n
    -- Reinhard Zumkeller, Jan 08 2013
    
  • Mathematica
    nxt[n_] := FromDigits[Flatten[IntegerDigits/@Table[#[[1]], {#[[2]]}]&/@ FactorInteger[n]]]; Table[Length[NestWhileList[nxt, n, !PrimeQ[#]&]] - 1, {n, 48}] (* Harvey P. Dale, Jan 03 2013 *)
  • PARI
    row_a027746(n, o=[1])=if(n>1, concat(apply(t->vector(t[2], i, t[1]), Vec(factor(n)~))), o) \\ after M. F. Hasler in A027746
    tonum(vec) = my(s=""); for(k=1, #vec, s=concat(s, Str(vec[k]))); eval(s)
    a(n) = if(n==1, return(-1)); my(x=n, i=0); while(1, if(ispseudoprime(x), return(i)); x=tonum(row_a027746(x)); i++) \\ Felix Fröhlich, May 17 2021
    
  • Python
    from sympy import factorint
    def a(n):
        if n < 2: return -1
        klst, f = [n], sorted(factorint(n, multiple=True))
        while len(f) > 1:
            klst.append(int("".join(map(str, f))))
            f = sorted(factorint(klst[-1], multiple=True))
        return len(klst) - 1
    print([a(n) for n in range(1, 49)]) # Michael S. Branicky, Aug 02 2021

Extensions

Edited by Charles R Greathouse IV, Apr 23 2010
a(1) = -1 by Reinhard Zumkeller, Jan 08 2013
Name edited by Felix Fröhlich, May 17 2021

A037271 Number of steps to reach a prime under "replace n with concatenation of its prime factors" when applied to n-th composite number, or -1 if no such number exists.

Original entry on oeis.org

2, 1, 13, 2, 4, 1, 5, 4, 4, 1, 15, 1, 1, 2, 3, 4, 4, 1, 2, 2, 1, 5, 3, 2, 2, 1, 9, 2, 9, 6, 1, 15
Offset: 1

Views

Author

Keywords

Comments

a(33) is presently unknown: starting with 49, no prime has been reached after 110 steps. See A037274 for the latest information.

Examples

			Starting with 14 (the seventh composite number) we get 14=2*7, 27=3*3*3, 333=3*3*37, 3337=47*71, 4771=13*367, 13367 is prime; so a(7)=5.
		

Crossrefs

Programs

  • Haskell
    a037271 = length . takeWhile ((== 0) . a010051'') .
                                 iterate a037276 . a002808
    -- Reinhard Zumkeller, Apr 03 2012
  • Mathematica
    maxComposite = 49; maxIter = 40; concat[n_] := FromDigits[ Flatten[ IntegerDigits /@ Flatten[ Apply[ Table, {#[[1]], {#[[2]]}} & /@ FactorInteger[n], {1}]]]]; composites = Select[ Range[2, maxComposite], ! PrimeQ[#] &]; a[n_] := ( lst = NestWhileList[ concat, composites[[n]], ! PrimeQ[#] &, 1, maxIter]; If[PrimeQ[ Last[lst]], Length[lst] - 1, - 1]); Table[a[n], {n, 1, Length[composites]}] (* Jean-François Alcover, Jul 10 2012 *)

A225721 Starting with x = n, the number of iterations of x := 2x - 1 until x is prime, or -1 if no prime exists.

Original entry on oeis.org

-1, 0, 0, 1, 0, 1, 0, 2, 1, 1, 0, 1, 0, 2, 1, 1, 0, 3, 0, 6, 1, 1, 0, 1, 2, 2, 1, 2, 0, 1, 0, 8, 3, 1, 2, 1, 0, 2, 5, 1, 0, 1, 0, 2, 1, 2, 0, 583, 1, 2, 1, 1, 0, 1, 1, 4, 1, 2, 0, 5, 0, 4, 7, 1, 2, 1, 0, 2, 1, 1, 0, 3, 0, 2, 1, 1, 4, 3, 0, 2, 3, 1, 0, 1, 2, 4
Offset: 1

Views

Author

Keywords

Comments

This appears to be a shifted variant of A040076. - R. J. Mathar, May 28 2013
If n is prime, then a(n) = 0. If the sequence never reaches a prime number (for n = 1) or the prime number has more than 1000 digits, -1 is used instead. There are 22 such numbers for n < 10000.

Examples

			For a(20), the trajectory is 20->39->77->153->305->609->1217, a prime number. That required 6 steps, so a(20)=6.
		

Crossrefs

Cf. A050921 (primes obtained).
Cf. A040081, A038699, A050412, A052333, A046069 (related to the Riesel problem).
Cf. A000668, A000043, A065341 (Mersenne primes), A000079 (powers of 2).
Cf. A007770 (happy numbers), A031177 (unhappy numbers).
Cf. A037274 (home primes), A037271 (steps), A037272, A037272.

Programs

  • R
    y=as.bigz(rep(0,500)); ys=rep(0,500);
    for(i in 1:500) { n=as.bigz(i); k=0;
        while(isprime(n)==0 & ndig(n)<1000 & k<5000) { k=k+1; n=2*n-1 }
        if(ndig(n)>=1000 | k>=5000) { ys[i]=-1; y[i]=-1;
        } else {ys[i]=k; y[i]=n; }
    }
Showing 1-6 of 6 results.