cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 29 results. Next

A037274 Home primes: for n >= 2, a(n) = the prime that is finally reached when you start with n, concatenate its prime factors (A037276) and repeat until a prime is reached (a(n) = -1 if no prime is ever reached).

Original entry on oeis.org

1, 2, 3, 211, 5, 23, 7, 3331113965338635107, 311, 773, 11, 223, 13, 13367, 1129, 31636373, 17, 233, 19, 3318308475676071413, 37, 211, 23, 331319, 773, 3251, 13367, 227, 29, 547, 31, 241271, 311, 31397, 1129, 71129, 37, 373, 313, 3314192745739, 41, 379, 43, 22815088913, 3411949, 223, 47, 6161791591356884791277
Offset: 1

Views

Author

Keywords

Comments

The initial 1 could have been omitted.
Probabilistic arguments give exactly zero for the chance that the sequence of integers starting at n contains no prime, the expected number of primes being given by a divergent sequence. - J. H. Conway
After over 100 iterations, a(49) is still composite - see A056938 for the latest information.
More terms:
a(50) to a(60) are 3517, 317, 2213, 53, 2333, 773, 37463, 1129, 229, 59, 35149;
a(61) to a(65) are 61, 31237, 337, 1272505013723, 1381321118321175157763339900357651;
a(66) to a(76) are 2311, 67, 3739, 33191, 257, 71, 1119179, 73, 379, 571, 333271.
This is different from A195264. Here 8 = 2^3 -> 222 -> ... -> 3331113965338635107 (a prime), whereas in A195264 8 = 2^3 -> 23 (a prime). - N. J. A. Sloane, Oct 12 2014

Examples

			9 = 3*3 -> 33 = 3*11 -> 311, prime, so a(9) = 311.
The trajectory of 8 is more interesting:
8 ->
2 * 2 * 2 ->
2 * 3 * 37 ->
3 * 19 * 41 ->
3 * 3 * 3 * 7 * 13 * 13 ->
3 * 11123771 ->
7 * 149 * 317 * 941 ->
229 * 31219729 ->
11 * 2084656339 ->
3 * 347 * 911 * 118189 ->
11 * 613 * 496501723 ->
97 * 130517 * 917327 ->
53 * 1832651281459 ->
3 * 3 * 3 * 11 * 139 * 653 * 3863 * 5107
and 3331113965338635107 is prime, so a(8) = 3331113965338635107.
		

References

  • Jeffrey Heleen, Family Numbers: Mathemagical Black Holes, Recreational and Educational Computing, 5:5, pp. 6, 1990.
  • Jeffrey Heleen, Family numbers: Constructing Primes by Prime Factor Splicing, J. Recreational Math., Vol. 28 #2, 1996-97, pp. 116-119.

Crossrefs

Cf. A195264 (use exponents instead of repeating primes).
Cf. A084318 (use only one copy of each prime), A248713 (Fermi-Dirac analog: use unique representation of n>1 as a product of distinct terms of A050376).
Cf. also A120716 and related sequences.

Programs

  • Maple
    b:= n-> parse(cat(sort(map(i-> i[1]$i[2], ifactors(n)[2]))[])):
    a:= n-> `if`(isprime(n) or n=1, n, a(b(n))):
    seq(a(n), n=1..48);  # Alois P. Heinz, Jan 09 2021
  • Mathematica
    f[n_] := FromDigits@ Flatten[ IntegerDigits@ Table[ #[[1]], { #[[2]] }] & /@ FactorInteger@n, 2]; g[n_] := NestWhile[ f@# &, n, !PrimeQ@# &]; g[1] = 1; Array[g, 41] (* Robert G. Wilson v, Sep 22 2007 *)
  • PARI
    step(n)=my(f=factor(n),s="");for(i=1,#f~,for(j=1,f[i,2],s=Str(s,f[i,1]))); eval(s)
    a(n)=if(n<4,return(n)); while(!isprime(n), n=step(n)); n \\ Charles R Greathouse IV, May 14 2015
    
  • Python
    from sympy import factorint, isprime
    def f(n): return int("".join(str(p)*e for p, e in factorint(n).items()))
    def a(n):
        if n == 1: return 1
        fn = n
        while not isprime(fn): fn = f(fn)
        return fn
    print([a(n) for n in range(1, 40)]) # Michael S. Branicky, Jul 11 2022
  • SageMath
    def digitLen(x,n):
        r=0
        while(x>0):
            x//=n
            r+=1
        return r
    def concatPf(x,n):
        r=0
        f=list(factor(x))
        for c in range(len(f)):
            for d in range(f[c][1]):
                r*=(n**digitLen(f[c][0],n))
                r+=f[c][0]
        return r
    def hp(x,n):
        x1=concatPf(x,n)
        while(x1!=x):
            x=x1
            x1=concatPf(x1,n)
        return x
    #example: prints the home prime of 8 in base 10
    print(hp(8,10))
    

Extensions

Corrected and extended by Karl W. Heuer, Sep 30 2003

A037271 Number of steps to reach a prime under "replace n with concatenation of its prime factors" when applied to n-th composite number, or -1 if no such number exists.

Original entry on oeis.org

2, 1, 13, 2, 4, 1, 5, 4, 4, 1, 15, 1, 1, 2, 3, 4, 4, 1, 2, 2, 1, 5, 3, 2, 2, 1, 9, 2, 9, 6, 1, 15
Offset: 1

Views

Author

Keywords

Comments

a(33) is presently unknown: starting with 49, no prime has been reached after 110 steps. See A037274 for the latest information.

Examples

			Starting with 14 (the seventh composite number) we get 14=2*7, 27=3*3*3, 333=3*3*37, 3337=47*71, 4771=13*367, 13367 is prime; so a(7)=5.
		

Crossrefs

Programs

  • Haskell
    a037271 = length . takeWhile ((== 0) . a010051'') .
                                 iterate a037276 . a002808
    -- Reinhard Zumkeller, Apr 03 2012
  • Mathematica
    maxComposite = 49; maxIter = 40; concat[n_] := FromDigits[ Flatten[ IntegerDigits /@ Flatten[ Apply[ Table, {#[[1]], {#[[2]]}} & /@ FactorInteger[n], {1}]]]]; composites = Select[ Range[2, maxComposite], ! PrimeQ[#] &]; a[n_] := ( lst = NestWhileList[ concat, composites[[n]], ! PrimeQ[#] &, 1, maxIter]; If[PrimeQ[ Last[lst]], Length[lst] - 1, - 1]); Table[a[n], {n, 1, Length[composites]}] (* Jean-François Alcover, Jul 10 2012 *)

A056938 Concatenate all the prime divisors in previous term (with repetition), starting at 49.

Original entry on oeis.org

49, 77, 711, 3379, 31109, 132393, 344131, 1731653, 71143523, 11115771019, 31135742029, 717261644891, 11193431873899, 116134799345907, 3204751189066719, 31068250396355573, 62161149980213343, 336906794442245927, 734615161567701999, 31318836286194043641
Offset: 1

Views

Author

Robert G. Wilson v, Sep 05 2000

Keywords

Comments

This sequence provides a record of the search for the home prime for 49.
This sequence has now been followed for 117 steps without a prime being reached (after which of course it would simply repeat).

Crossrefs

Programs

  • Mathematica
    g[n_] := (x = n; d = {}; While[FactorInteger[x] != {}, f = FactorInteger[x, FactorComplete -> True][[1, 1]]; x = x/f; AppendTo[d, IntegerDigits[f]]]; FromDigits[Flatten[d]]); NestList[g, 49, 25]
    (* Second program: *)
    NestList[FromDigits@ Flatten@ Map[IntegerDigits, FactorInteger[#] /. {p_, e_} /; p >= 1 :> If[p == 1, 1, ConstantArray[p, e]]] &, 49, 16] (* Michael De Vlieger, Apr 27 2017 *)
  • PARI
    a=vector(35); a[1]=49; for(k=2,length(a), f=factor(a[k-1]); for(i=1,matsize(f)[1], l=10^ceil(log(f[i,1])/log(10)); for(j=1,f[i,2], a[k]=a[k]*l+f[i,1]))) \\ M. F. Hasler, Mar 09 2007

Extensions

b-file updated by Max Alekseyev, Nov 28 2017

A037272 Primes reached in A037271, or -1 if no such prime exists.

Original entry on oeis.org

211, 23, 3331113965338635107, 311, 773, 223, 13367, 1129, 31636373, 233, 3318308475676071413, 37, 211, 331319, 773, 3251, 13367, 227, 547, 241271, 311, 31397, 1129, 71129, 373, 313, 3314192745739, 379, 22815088913, 3411949, 223, 6161791591356884791277
Offset: 1

Views

Author

Keywords

Comments

The next term, a(33), is presently unknown. See A037274. - N. J. A. Sloane, Apr 30 2014

Crossrefs

A037941 Trajectory of 48 under prime factor concatenation procedure.

Original entry on oeis.org

48, 2, 2, 2, 2, 3, 71, 313, 3, 11, 2161, 3, 13, 199, 401, 19, 43, 109, 3517, 11, 17, 109, 877, 1087, 23, 1481, 7039, 46591, 3, 3, 7, 53, 67, 1034726207, 3, 11251223678242069, 23, 4583, 2952795526741, 359, 5782291, 1130063089
Offset: 0

Views

Author

Keywords

Examples

			48 = 2*2*2*2*3, so the next terms are 2,2,2,2,3; 22223 = 71*313, so the next terms are 71, 313; 71313 = 3*11*2161, so then we get 3, 11, 2161; etc.
		

Crossrefs

Cf. A037273.

Extensions

Edited by Charles R Greathouse IV, Apr 30 2010

A037919 Trajectory of 4 under prime factor concatenation procedure.

Original entry on oeis.org

4, 2, 2, 2, 11, 211
Offset: 0

Views

Author

Keywords

Examples

			May be regarded as the rows of an irregular triangle:
4
2 2
2 11
211. - _N. J. A. Sloane_, Jun 15 2022
		

Crossrefs

Cf. A037273.

Extensions

Edited by Charles R Greathouse IV, Apr 30 2010

A037299 Prime substrings of prime numbers in A037272.

Original entry on oeis.org

2, 11, 2, 3, 3, 3, 3, 11, 139, 653, 3863, 5107, 3, 11, 7, 73, 2, 2, 3, 13, 367, 11, 29, 3, 163, 6373, 2, 3, 3, 3, 31, 8308475676071413, 3, 7, 2, 11, 3, 3, 13, 19, 7, 73, 3, 251, 13, 367, 2, 2, 7, 5, 47, 2, 41, 271, 3, 11, 3, 13, 97, 11, 29, 7, 11, 29, 3, 73, 3, 13, 3, 31, 41
Offset: 0

Views

Author

Keywords

Comments

There should be an analogous sequence for A037273 (N. J. A. Sloane).

A037300 Number of prime substrings of prime numbers in A037272.

Original entry on oeis.org

2, 2, 8, 2, 2, 3, 2, 2, 3, 3, 3, 2, 2, 4, 2, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 2, 4, 2, 2, 3, 2, 4
Offset: 0

Views

Author

Keywords

Comments

There should be an analogous sequence for A037273 (N. J. A. Sloane).

A037920 Trajectory of 8 under prime factor concatenation procedure.

Original entry on oeis.org

8, 2, 2, 2, 2, 3, 37, 3, 19, 41, 3, 3, 3, 7, 13, 13, 3, 11123771, 7, 149, 317, 941, 229, 31219729, 11, 2084656339, 3, 347, 911, 118189, 11, 613, 496501723, 97, 130517, 917327, 53, 1832651281459, 3, 3, 3, 11, 139, 653, 3863, 5107
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Python
    from sympy import factorint
    def iterate(n):
        flst, f = [n], sorted(factorint(n, multiple=True))
        while len(f) > 1:
            flst += f
            f = sorted(factorint(int("".join(map(str, f))), multiple=True))
        return flst
    print(iterate(8)) # Michael S. Branicky, Aug 02 2021

Extensions

Edited by Charles R Greathouse IV, Apr 30 2010

A037921 Trajectory of 9 under prime factor concatenation procedure.

Original entry on oeis.org

9, 3, 3, 3, 11, 311
Offset: 1

Views

Author

Keywords

Examples

			9 -> 3,3 -> 3,11 -> 311
		

Crossrefs

Extensions

Edited by Charles R Greathouse IV, Apr 30 2010
Showing 1-10 of 29 results. Next