cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A003246 Discriminants of real quadratic norm-Euclidean fields (a finite sequence).

Original entry on oeis.org

5, 8, 12, 13, 17, 21, 24, 28, 29, 33, 37, 41, 44, 57, 73, 76
Offset: 1

Views

Author

Keywords

Comments

Euclidean fields that are not norm-Euclidean, such as Q(sqrt(14)) and Q(sqrt(69)), are not included. Actually, assuming GCH, a real quadratic field is Euclidean if and only if it is a PID (equivalently, if and only if it is a UFD). - Jianing Song, Jun 09 2022

References

  • W. J. LeVeque, Topics in Number Theory. Addison-Wesley, Reading, MA, 2 vols., 1956, Vol. 2, p. 57.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • H. M. Stark, An Introduction to Number Theory. Markham, Chicago, 1970, p. 294.

Crossrefs

Programs

Formula

Equals A037449(A003174) as a set, not composition of functions (values are sorted by size; it turns out that a(n) is different from A037449(A003174(n)) for all n=1,...,16). - M. F. Hasler, Jan 26 2014

A072903 Numbers m such that the discriminant of the quadratic field Q(sqrt(m)) < m.

Original entry on oeis.org

4, 9, 16, 18, 20, 25, 27, 32, 36, 45, 48, 49, 50, 52, 54, 63, 64, 68, 72, 75, 80, 81, 84, 90, 96, 98, 99, 100, 108, 112, 116, 117, 121, 125, 126, 128, 132, 135, 144, 147, 148, 150, 153, 160, 162, 164, 169, 171, 175, 176, 180, 189, 192, 196, 198, 200, 207, 208, 212
Offset: 1

Views

Author

Benoit Cloitre, Aug 10 2002

Keywords

Comments

Among terms are all the squares for which discriminant = 1.

Crossrefs

Programs

  • Mathematica
    Select[Range[220], NumberFieldDiscriminant[Sqrt[#]] < # &] (* Amiram Eldar, Jun 24 2022 *)
  • PARI
    isok(m) = quaddisc(m) < m; \\ Michel Marcus, Feb 18 2021

Formula

a(n) appears to be asymptotic to C*n with C = 3.4... .

A072904 Nonsquares m such that the discriminant of the quadratic field Q(sqrt(m)) < m.

Original entry on oeis.org

18, 20, 27, 32, 45, 48, 50, 52, 54, 63, 68, 72, 75, 80, 84, 90, 96, 98, 99, 108, 112, 116, 117, 125, 126, 128, 132, 135, 147, 148, 150, 153, 160, 162, 164, 171, 175, 176, 180, 189, 192, 198, 200, 207, 208, 212, 216, 224, 228, 234, 240, 242, 243, 244, 245, 250
Offset: 1

Views

Author

Benoit Cloitre, Aug 10 2002

Keywords

Crossrefs

Cf. A037449.
Intersection of A000037 and A072903.

Programs

  • Mathematica
    Select[Range[250], !IntegerQ@Sqrt[#] && NumberFieldDiscriminant[Sqrt[#]] < # &] (* Amiram Eldar, Jun 24 2022 *)
  • PARI
    isok(m) = !issquare(m) && (quaddisc(m) < m); \\ Michel Marcus, Feb 18 2021

Formula

a(n) appears to be asymptotic to C*n with C = 3.4... .

A204993 Negative of the discriminant of quadratic field Q(sqrt(-n)).

Original entry on oeis.org

4, 8, 3, 4, 20, 24, 7, 8, 4, 40, 11, 3, 52, 56, 15, 4, 68, 8, 19, 20, 84, 88, 23, 24, 4, 104, 3, 7, 116, 120, 31, 8, 132, 136, 35, 4, 148, 152, 39, 40, 164, 168, 43, 11, 20, 184, 47, 3, 4, 8, 51, 52, 212, 24, 55, 56, 228, 232, 59, 15, 244, 248, 7, 4, 260
Offset: 1

Views

Author

Artur Jasinski, Jan 27 2012

Keywords

Comments

For the discriminant of the quadratic field Q(sqrt(n)), see A037449.
a(n) is the smallest positive N such that ((-n)/k) = ((-n)/(k mod N)) for every odd k that is coprime to n, where ((-n)/k) is the Jacobi symbol. As we have Dirichlet's theorem on arithmetic progressions, a(n) is also the smallest positive N such that ((-n)/p) = ((-n)/(p mod N)) for every odd prime p that is not a factor of n. - Jianing Song, May 16 2024

Crossrefs

Programs

  • Mathematica
    -Table[NumberFieldDiscriminant[Sqrt[-n]], {n, 1, 70}]
  • PARI
    a(n) = -quaddisc(-n) \\ Jianing Song, May 16 2024

Formula

Let b(n) = A007913(n), then a(n) = b(n) if b(n) == 3 (mod 4) and 4*b(n) otherwise. - Jianing Song, May 16 2024

A072902 Nonprime numbers m such that the discriminant of the quadratic field Q(sqrt(m)) equals m.

Original entry on oeis.org

1, 8, 12, 21, 24, 28, 33, 40, 44, 56, 57, 60, 65, 69, 76, 77, 85, 88, 92, 93, 104, 105, 120, 124, 129, 133, 136, 140, 141, 145, 152, 156, 161, 165, 168, 172, 177, 184, 185, 188, 201, 204, 205, 209, 213, 217, 220, 221, 232, 236, 237, 248, 249, 253, 264, 265, 268
Offset: 1

Views

Author

Benoit Cloitre, Aug 10 2002

Keywords

Comments

A subset of the nonprime numbers (A018252).
Positive fundamental discriminants (A003658) that are not Pythagorean primes (A002144). - Paul Muljadi, Mar 30 2008

Crossrefs

Programs

  • Mathematica
    FundamentalDiscriminantQ[d_] := Module[{m, mod = Mod[d, 4]}, If[mod > 1, Return[False]]; If[mod == 1, Return[ SquareFreeQ[d] && d != 1]]; m = d/4; Return[ SquareFreeQ[m] && Mod[m, 4] > 1]]; Join[{1}, Select[ Range[270], !PrimeQ[#] && FundamentalDiscriminantQ[#]& ]] (* Jean-François Alcover, Jun 05 2012, after Eric W. Weisstein *)
  • PARI
    isok(m) = !isprime(m) && (quaddisc(m) == m); \\ Michel Marcus, Feb 18 2021

Formula

a(n) appears to be asymptotic to C*n with C = 3.91... .

A236546 Discriminant of A048981(n) (= squarefree integers for which the quadratic field Q[sqrt(D)] is norm-Euclidean).

Original entry on oeis.org

-11, -7, -3, -8, -4, 8, 12, 5, 24, 28, 44, 13, 17, 76, 21, 29, 33, 37, 41, 57, 73
Offset: 1

Views

Author

M. F. Hasler, Jan 28 2014

Keywords

Comments

Note that here, values are not sorted by size, but in direct correspondence with terms of A048981. This is in contrast to A003246, where the same positive values are listed by size.

Crossrefs

Programs

Formula

a(n) = A037449(A048981(n)) for n>5, a(n) = -A204993(-A048981(n)) for n <= 5.

A072900 Discriminant of quadratic field Q(sqrt(prime(n))) where prime(n) is the n-th prime.

Original entry on oeis.org

8, 12, 5, 28, 44, 13, 17, 76, 92, 29, 124, 37, 41, 172, 188, 53, 236, 61, 268, 284, 73, 316, 332, 89, 97, 101, 412, 428, 109, 113, 508, 524, 137, 556, 149, 604, 157, 652, 668, 173, 716, 181, 764, 193, 197, 796, 844, 892, 908, 229, 233, 956, 241, 1004, 257, 1052
Offset: 1

Views

Author

Benoit Cloitre, Aug 10 2002

Keywords

Crossrefs

a(n) = A037449(A000040(n)).

Programs

  • Mathematica
    If[Mod[#,4]==1,#,4#]&/@Prime[Range[60]] (* Harvey P. Dale, Jul 26 2015 *)
  • PARI
    a(n)=if(n<0,0,coredisc(prime(n)))

Formula

a(n) = if prime(n)=4k+1 then prime(n) else prime(n)*4.
a(n) = (3*floor((prime(n) mod 4)/2) + 1)*prime(n). - Reinhard Zumkeller, Aug 20 2002

A072901 Composite numbers n such that the discriminant of the quadratic field Q(sqrt(n)) equals 4n.

Original entry on oeis.org

6, 10, 14, 15, 22, 26, 30, 34, 35, 38, 39, 42, 46, 51, 55, 58, 62, 66, 70, 74, 78, 82, 86, 87, 91, 94, 95, 102, 106, 110, 111, 114, 115, 118, 119, 122, 123, 130, 134, 138, 142, 143, 146, 154, 155, 158, 159, 166, 170, 174, 178, 182, 183, 186, 187, 190, 194, 195
Offset: 1

Views

Author

Benoit Cloitre, Aug 10 2002

Keywords

Comments

Conjecture: All terms are squarefree. Example: 6=2*3; 15=3*5; 30=2*3*5; 154=2*7*11; 195=3*5*13. - Vincenzo Librandi, Aug 08 2010 and Michel Marcus, Nov 26 2013
If prime numbers were accepted, then sequence A230375 would have been obtained. - Michel Marcus, Nov 26 2013

Crossrefs

Cf. A037449.

Programs

  • PARI
    isok(n) = !isprime(n) && (quaddisc(n) == 4*n); \\ Michel Marcus, Nov 26 2013
Showing 1-8 of 8 results.