cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A317903 a(n) = A038394(n)^^A038394(n) (mod 10^len(A038394(n))), where ^^ indicates tetration or hyper-4 (e.g., 3^^4=3^(3^(3^3))).

Original entry on oeis.org

4, 76, 176, 4176, 314176, 91314176, 891314176, 80891314176, 88080891314176, 5288080891314176, 705288080891314176, 10705288080891314176, 2410705288080891314176, 912410705288080891314176, 42912410705288080891314176, 9242912410705288080891314176, 989242912410705288080891314176
Offset: 1

Views

Author

Marco Ripà, Aug 10 2018

Keywords

Comments

For any n >= 2, a(n) (mod 10^len(A038394(n))) == a(n + 1) (mod 10^len(A038394(n))), where len(k) := number of digits in k. Assuming len(a(n))>1, this is a general property of every concatenated sequence with fixed rightmost digits (such as A014925 or A092447), as shown in Ripà's book "La strana coda della serie n^n^...^n".

Examples

			For n = 6, a(6) = 13117532^^13117532 (mod 10^8) == 91314176.
		

References

  • Marco Ripà, La strana coda della serie n^n^...^n, Trento, UNI Service, Nov 2011, page 60. ISBN 978-88-6178-789-6

Crossrefs

Cf. A038394, A068670, A171882 (tetration), A317824.

Programs

  • PARI
    tmod(b, n) = {if (b % n == 0, return (0)); if (b % n == 1, return (1)); if (gcd(b, n)==1, return (lift(Mod(b, n)^tmod(b, lift(znorder(Mod(b, n))))))); lift(Mod(b, n)^(eulerphi(n) + tmod(b, eulerphi(n))));}
    f(n) = fromdigits(concat([digits(p) | p<-Vecrev(primes(n))])); \\ A038394
    a(n) = if (n==1, 4, my(x=f(n)); tmod(x, 10^#Str(x))); \\ Michel Marcus, Sep 12 2021

Formula

a(n) = (p(n)p(n-1)_p(n-2)...3_2)^^(p(n)_p(n-1)_p(n-2)...3_2) (mod 10^len(p(n)_p(n-1)_p(n-2)..._3_2)), where len(k) := number of digits in k.

Extensions

More terms from Jinyuan Wang, Aug 30 2020

A019518 Smarandache-Wellin numbers: a(n) is the concatenation of first n primes (written in base 10).

Original entry on oeis.org

2, 23, 235, 2357, 235711, 23571113, 2357111317, 235711131719, 23571113171923, 2357111317192329, 235711131719232931, 23571113171923293137, 2357111317192329313741, 235711131719232931374143, 23571113171923293137414347
Offset: 1

Views

Author

R. Muller

Keywords

Examples

			E.g. a(6) = 2_3_5_7_11_13 = 23571113.
		

References

  • R. Crandall and C. Pomerance, Prime Numbers: A Computational Perspective, Springer, NY, 2001; see p. 72. [The 2002 printing states incorrectly that a(719) is prime. Cf. A046035.] This book uses the name "Smarandache-Wellin numbers", referring to a 1998 private communication from P. Wellin.
  • H. Ibstedt, A Few Smarandache Sequences, Smarandache Notions Journal, Vol. 8, No. 1-2-3, 1997, 170-183.
  • M. Le, On Smarandache Concatenated Sequences I: Prime Power Sequences, Smarandache Notions Journal, Vol. 9, No. 1-2, 1998, 129-130.
  • S. Smarandoiu, Convergence of Smarandache continued fractions, Abstract 96T-11-195, Abstracts Amer. Math. Soc., 17 (No. 4, 1996), 680.

Crossrefs

For the primes in this sequence see A069151. For where the primes occur see A046035.
Cf. A000040, A038394, A046284, A068670 (number of digits).

Programs

  • Haskell
    a019518 n = a019518_list !! (n-1)
    a019518_list = map read $ scanl1 (++) $ map show a000040_list :: [Integer]
    -- Reinhard Zumkeller, Mar 03 2014
    
  • Magma
    [Seqint(Reverse(&cat[Reverse(Intseq(NthPrime(k))): k in [1..n]])): n in [1..20]]; // Vincenzo Librandi, Aug 23 2015
  • Mathematica
    ConsecutivePrimes[n_] := FromDigits[Flatten[IntegerDigits /@ Prime[Range[n]]]] (* Eric W. Weisstein *)
    Table[FromDigits[Flatten[IntegerDigits[Prime[Range[i]]]]],{i,15}] (* Jayanta Basu, May 30 2013 *)
  • PARI
    s="";for(n=1,30,print1(s=Str(s,prime(n))",")) \\ Cino Hilliard; simplified by M. F. Hasler, Oct 06 2013
    
  • PARI
    A019518(n)=eval(concat(concat([""],primes(n)))) \\ Faster than concat(apply(s->Str(s),primes(n))) or forprime(...s=Str(s,p)). - M. F. Hasler, Oct 06 2013
    

Extensions

Definition edited by N. J. A. Sloane, Jul 02 2017

A038395 Concatenation of the first n odd numbers in reverse order.

Original entry on oeis.org

1, 31, 531, 7531, 97531, 1197531, 131197531, 15131197531, 1715131197531, 191715131197531, 21191715131197531, 2321191715131197531, 252321191715131197531, 27252321191715131197531, 2927252321191715131197531, 312927252321191715131197531
Offset: 1

Views

Author

M. I. Petrescu (mipetrescu(AT)yahoo.com)

Keywords

Comments

a(n) starts with the digits of 2n-1. Indices of prime or probable prime terms are 1,2,37,62,409,...: see also A089922. - M. F. Hasler, Apr 13 2008
If n == 0 (mod 3), so is a(n). - Sergey Pavlov, Mar 29 2017

References

  • Mihaly Bencze [Beneze] and L. Tutescu, Some Notions and Questions in Number Theory, Sequence 3.

Crossrefs

Programs

  • Mathematica
    Table[FromDigits[Flatten[IntegerDigits/@Join[Reverse[Range[1,n,2]]]]], {n,1,29,2}] (* Harvey P. Dale, Jun 02 2011 *)
  • PARI
    t=""; for( n=1,10^3, ( t=eval( Str( 2*n-1,t))) & print(n" "t)) \\ M. F. Hasler, Apr 13 2008
    
  • Python
    def a(n): return int("".join(map(str, range(2*n-1, 0, -2))))
    print([a(n) for n in range(1, 17)]) # Michael S. Branicky, Jan 31 2021

Extensions

Edited and extended by M. F. Hasler, Apr 13 2008
Edited by T. D. Noe, Oct 30 2008

A092844 a(n) = Sum_{k=1..n} prime(k)*10^(k-1).

Original entry on oeis.org

2, 32, 532, 7532, 117532, 1417532, 18417532, 208417532, 2508417532, 31508417532, 341508417532, 4041508417532, 45041508417532, 475041508417532, 5175041508417532, 58175041508417532, 648175041508417532
Offset: 1

Views

Author

Jorge Coveiro, Apr 15 2004

Keywords

Crossrefs

Programs

  • Maple
    ListTools:-PartialSums([seq(ithprime(i)*10^(i-1),i=1..30)]); # Robert Israel, Apr 12 2020
  • Mathematica
    Array[Sum[Prime[k]*10^(k - 1), {k, #}] &, 17] (* Michael De Vlieger, Jun 22 2022 *)
    Accumulate[Table[Prime[n]10^(n-1),{n,20}]] (* Harvey P. Dale, Oct 11 2022 *)
  • PARI
    a(n) = fromdigits(Vecrev(primes(n))); \\ Kevin Ryde, Jun 22 2022
Showing 1-4 of 4 results.