cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A288915 Run lengths in A039704.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 3, 2, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 1, 1, 3, 1, 1, 2, 1, 4, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 3, 2, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 3, 3
Offset: 1

Views

Author

Zak Seidov, Jun 19 2017

Keywords

Comments

Is the sequence bounded?
On Dickson's conjecture this sequence is unbounded. Records: a(1) = 1, a(9) = 2, a(13) = 3, a(39) = 4, a(180) = 6, a(1348) = 7, a(6698) = 8, a(8156) = 10, a(20230) = 11, a(79011) = 12, a(99250) = 13, a(710895) = 15, a(2421600) = 16, a(7128444) = 17, a(11898707) = 18, a(14368535) = 20, a(21943755) = 22, a(519775979) = 25, a(3111006505) = 27. - Charles R Greathouse IV, Jun 19 2017

Crossrefs

Programs

  • Mathematica
    Length /@ Split[Mod[Prime[Range[100]], 6]]
  • PARI
    t=1;p=2;forprime(q=3,1e3,if((q-p)%6==0,t++,print1(t", ");t=1);p=q) \\ Charles R Greathouse IV, Jun 19 2017

Extensions

a(70) corrected by Charles R Greathouse IV, Jun 19 2017

A039703 a(n) = n-th prime modulo 5.

Original entry on oeis.org

2, 3, 0, 2, 1, 3, 2, 4, 3, 4, 1, 2, 1, 3, 2, 3, 4, 1, 2, 1, 3, 4, 3, 4, 2, 1, 3, 2, 4, 3, 2, 1, 2, 4, 4, 1, 2, 3, 2, 3, 4, 1, 1, 3, 2, 4, 1, 3, 2, 4, 3, 4, 1, 1, 2, 3, 4, 1, 2, 1, 3, 3, 2, 1, 3, 2, 1, 2, 2, 4, 3, 4, 2, 3, 4, 3, 4, 2, 1, 4, 4, 1, 1, 3, 4, 3, 4, 2, 1, 3, 2, 4, 2, 1, 4, 3, 4, 1, 3, 1, 2, 2, 3, 4, 1
Offset: 1

Views

Author

Keywords

Comments

a(A049084(A045356(n-1))) = even; a(A049084(A045429(n-1))) = odd. - Reinhard Zumkeller, Feb 25 2008

Crossrefs

Programs

Formula

Sum_k={1..n} a(k) ~ (5/2)*n. - Amiram Eldar, Dec 11 2024

A242119 Primes modulo 18.

Original entry on oeis.org

2, 3, 5, 7, 11, 13, 17, 1, 5, 11, 13, 1, 5, 7, 11, 17, 5, 7, 13, 17, 1, 7, 11, 17, 7, 11, 13, 17, 1, 5, 1, 5, 11, 13, 5, 7, 13, 1, 5, 11, 17, 1, 11, 13, 17, 1, 13, 7, 11, 13, 17, 5, 7, 17, 5, 11, 17, 1, 7, 11, 13, 5, 1, 5, 7, 11, 7, 13, 5, 7, 11, 17, 7, 13, 1, 5
Offset: 1

Views

Author

Vincenzo Librandi, May 05 2014

Keywords

Crossrefs

Cf. sequences of the type Primes mod k: A039701 (k=3), A039702 (k=4), A039703 (k=5), A039704 (k=6), A039705 (k=7), A039706 (k=8), A038194 (k=9), A007652 (k=10), A039709 (k=11), A039710 (k=12), A039711 (k=13), A039712 (k=14), A039713 (k=15), A039714 (k=16), A039715 (k=17), this sequence (k=18), A033633 (k=19), A242120(k=20), A242121 (k=21), A242122 (k=22), A229786 (k=23), A229787 (k=24), A242123 (k=25), A242124 (k=26), A242125 (k=27), A242126 (k=28), A242127 (k=29), A095959 (k=30), A110923 (k=100).

Programs

  • Magma
    [p mod(18): p in PrimesUpTo(500)];
    
  • Mathematica
    Mod[Prime[Range[100]], 18]
  • Sage
    [mod(p, 18) for p in primes(500)] # Bruno Berselli, May 05 2014

Formula

Sum_{i=1..n} a(i) ~ 9n. The derivation is the same as in the formula in A039715. - Jerzy R Borysowicz, Apr 27 2022

A039705 a(n) = n-th prime modulo 7.

Original entry on oeis.org

2, 3, 5, 0, 4, 6, 3, 5, 2, 1, 3, 2, 6, 1, 5, 4, 3, 5, 4, 1, 3, 2, 6, 5, 6, 3, 5, 2, 4, 1, 1, 5, 4, 6, 2, 4, 3, 2, 6, 5, 4, 6, 2, 4, 1, 3, 1, 6, 3, 5, 2, 1, 3, 6, 5, 4, 3, 5, 4, 1, 3, 6, 6, 3, 5, 2, 2, 1, 4, 6, 3, 2, 3, 2, 1, 5, 4, 5, 2, 3, 6, 1, 4, 6, 5, 2, 1, 2, 6, 1, 5, 3, 4, 1, 2, 6, 5, 3, 5, 2, 1, 4, 3, 2, 4
Offset: 1

Views

Author

Keywords

Comments

a(A049084(A045370(n-1))) is even; a(A049084(A045415(n-1))) is odd. - Reinhard Zumkeller, Feb 25 2008

Crossrefs

Programs

Formula

Sum_k={1..n} a(k) ~ (7/2)*n. - Amiram Eldar, Dec 11 2024

A099618 a(n) = 1 if the n-th prime == 1 mod 6, otherwise a(n) = 0.

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1
Offset: 1

Views

Author

Joseph Biberstine (jrbibers(AT)indiana.edu), Nov 19 2004

Keywords

Crossrefs

Characteristic function of A091178.

Programs

  • Mathematica
    Table[Mod[Mod[Mod[Mod[Prime[k], 6], 5], 3], 2], {k, 1, 120}]
    a[n_] := Boole[Mod[Prime[n], 6] == 1]; Array[a, 120] (* Amiram Eldar, Mar 14 2025 *)
  • PARI
    a(n) = (prime(n) % 6) == 1; \\ Michel Marcus, Jun 26 2019

Formula

From Amiram Eldar, Mar 14 2025: (Start)
a(n) = 1 - A132194(m).
Sum_{k=1..n} a(k) ~ n / 2. (End)

A247478 Primes p such that (p^4 + 5)/6 is prime.

Original entry on oeis.org

7, 11, 17, 29, 53, 71, 101, 109, 127, 179, 227, 241, 281, 307, 349, 487, 587, 647, 683, 727, 829, 1009, 1061, 1109, 1289, 1487, 1511, 1523, 1567, 1621, 1627, 1709, 1847, 1987, 2017, 2027, 2087, 2099, 2297, 2311, 2393, 2437, 2447, 2521, 2531, 2617, 2729, 2887, 2909, 2969, 3167, 3221, 3301, 3319, 3329, 3347, 3413, 3527
Offset: 1

Views

Author

Zak Seidov, Jan 19 2015

Keywords

Comments

(p^4+5)/6 is an integer for all primes p>3, because then p == (1 or 5) (mod 6) as in A039704, therefore p^2 == 1 (mod 6) and finally p^4 == 1 (mod 6).

Examples

			(7^4+5)/6 = 401 prime, (11^4+5)/6 = 2441 prime.
		

Crossrefs

Cf. A118915.

Programs

  • Magma
    [p: p in PrimesInInterval(3, 4000) | IsPrime((p^4+5) div 6)]; //  Vincenzo Librandi, Jan 21 2015
  • Mathematica
    Select[Prime[Range[10^3]], PrimeQ[(#^4 + 5) / 6] &] (* Vincenzo Librandi, Jan 21 2015 *)
  • PARI
    lista(nn) = {forprime(p=4, nn, if (isprime((p^4 + 5)/6), print1(p, ", ")););} \\ Michel Marcus, Jan 20 2015
    

A079950 Triangle of n-th prime modulo twice primes less n-th prime.

Original entry on oeis.org

2, 3, 3, 1, 5, 5, 3, 1, 7, 7, 3, 5, 1, 11, 11, 1, 1, 3, 13, 13, 13, 1, 5, 7, 3, 17, 17, 17, 3, 1, 9, 5, 19, 19, 19, 19, 3, 5, 3, 9, 1, 23, 23, 23, 23, 1, 5, 9, 1, 7, 3, 29, 29, 29, 29, 3, 1, 1, 3, 9, 5, 31, 31, 31, 31, 31, 1, 1, 7, 9, 15, 11, 3, 37, 37, 37, 37, 37, 1, 5, 1, 13, 19, 15, 7, 3, 41
Offset: 1

Views

Author

Reinhard Zumkeller, Jan 19 2003

Keywords

Comments

The right border of the triangle are the primes: T(n,n)=A000040(n); T(n,1)=A039702(n), T(n,2)=A039704(n) for n>1, T(n,3)=A007652(n) for n>2, T(n,4)=A039712(n) for n>3;

Examples

			Triangle begins:
  2;
  3, 3;
  1, 5, 5;
  3, 1, 7,  7;
  3, 5, 1, 11, 11;
  1, 1, 3, 13, 13, 13;
  1, 5, 7,  3, 17, 17, 17;
  ...
		

Crossrefs

Programs

  • Maple
    A079950 := proc(n,k)
        modp(ithprime(n),2*ithprime(k)) ;
    end proc:
    seq(seq(A079950(n,k),k=1..n),n=1..12) ; # R. J. Mathar, Sep 28 2017
  • PARI
    T(n,k) = prime(n) % (2*prime(k));
    tabl(nn) = for (n=1, nn, for (k=1, n, print1(T(n,k), ", ")); print); \\ Michel Marcus, Sep 21 2017

Formula

T(n, k) = prime(n) mod 2*prime(k), 1<=k<=n.

A181938 Isolated primes = 1 mod 6: sandwiched by primes = 5 mod 6.

Original entry on oeis.org

7, 13, 19, 43, 97, 103, 109, 127, 139, 181, 193, 229, 241, 283, 307, 313, 349, 397, 409, 421, 457, 463, 487, 499, 643, 691, 709, 769, 787, 811, 823, 829, 853, 859, 877, 883, 907, 919, 937, 967, 1021, 1051, 1093, 1153, 1171, 1279, 1303, 1423, 1429, 1447, 1483
Offset: 1

Views

Author

Zak Seidov, Apr 03 2012

Keywords

Comments

Primes p(m) = 1 mod 6 such that both p(m-1) and p(m+1) are congruent to 5 mod 6.
Corresponding indices m are 4, 6, 8, 14, 25, 27, 29, 31 (A181978).
Note that values of d = p(m+1) - p(m-1) are multiples of 6.

Examples

			7 = p(4) = 1 mod 6 and both p(3) = 5 and p(5) = 11 are congruent to 5 mod 6,
13 = p(6) = 1 mod 6 and both p(5) = 11 and p(7) = 17 are congruent to 5 mod 6,
43 = p(14) = 1 mod 6 and both p(13) = 41 and p(15) = 47 are congruent to 5 mod 6.
		

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[2, 300]], Mod[#, 6] == 1 && Mod[NextPrime[#, -1], 6] == 5 && Mod[NextPrime[#, 1], 6] == 5 &] (* T. D. Noe, Apr 04 2012 *)
    Transpose[Select[Partition[Prime[Range[250]],3,1],Mod[#[[1]],6] == Mod[#[[3]],6] == 5&&Mod[#[[2]],6]==1&]][[2]] (* Harvey P. Dale, Sep 17 2012 *)

A141455 Irregular triangle showing the set of all possible values of primes modulo n in row n.

Original entry on oeis.org

0, 1, 0, 1, 2, 1, 2, 3, 0, 1, 2, 3, 4, 1, 2, 3, 5, 0, 1, 2, 3, 4, 5, 6, 1, 2, 3, 5, 7, 1, 2, 3, 4, 5, 7, 8, 1, 2, 3, 5, 7, 9, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 2, 3, 5, 7, 11, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 1, 2, 3, 5, 7, 9, 11, 13, 1, 2, 3, 4, 5, 7, 8, 11, 13, 14, 1, 2, 3, 5, 7, 9, 11, 13, 15
Offset: 2

Views

Author

Roger L. Bagula and Gary W. Adamson, Aug 07 2008

Keywords

Examples

			Table begins:0, 1;
0, 1, 2;
1, 2, 3;
0, 1, 2, 3, 4;
1, 2, 3, 5;
0, 1, 2, 3, 4, 5, 6;
1, 2, 3, 5, 7;
1, 2, 3, 4, 5, 7, 8;
1, 2, 3, 5, 7, 9;
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10;
1, 2, 3, 5, 7, 11;
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12;
1, 2, 3, 5, 7, 9, 11, 13;
1, 2, 3, 4, 5, 7, 8, 11, 13, 14;
1, 2, 3, 5, 7, 9, 11, 13, 15;
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16;
1, 2, 3, 5, 7, 11, 13, 17;
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18;
1, 2, 3, 5, 7, 9, 11, 13, 17, 19;
		

Crossrefs

Cf. A057859 (row lengths), A039701 (row n=3), A039704 (row n=6), A027748, A038566.

Programs

  • Mathematica
    Table[Union[FactorInteger[n][[All, 1]] /. n -> 0, Select[Range[n - 1], CoprimeQ[n, #] &]], {n, 2, 15}] (* Michael De Vlieger, Apr 18 2022 *)

Formula

Row n = A027748(n) U A038566(n), writing n as 0 iff n is prime. - Michael De Vlieger, Apr 18 2022

A263483 a(n) = prime(n)+(prime(n) modulo 6).

Original entry on oeis.org

4, 6, 10, 8, 16, 14, 22, 20, 28, 34, 32, 38, 46, 44, 52, 58, 64, 62, 68, 76, 74, 80, 88, 94, 98, 106, 104, 112, 110, 118, 128, 136, 142, 140, 154, 152, 158, 164, 172, 178, 184, 182, 196, 194, 202, 200, 212, 224, 232, 230, 238, 244, 242, 256, 262, 268, 274, 272, 278, 286, 284, 298, 308, 316, 314
Offset: 1

Views

Author

Zak Seidov, Oct 19 2015

Keywords

Comments

For n>2, a(n)-a(n+1)=2 iff prime(n) and prime(n+1) are twin primes; e.g., a(3)-a(4)=10-8=2 and prime(3)=5 and prime(4)=7 are twin primes.

Crossrefs

Programs

  • Maple
    p:= 1:
    for n from 1 to 100 do
      p:= nextprime(p);
      A[n]:= p + (p mod 6);
    od:
    seq(A[n],n=1..100); # Robert Israel, Jul 18 2018
  • Mathematica
    Table[(p=Prime[n])+Mod[p,6],{n,100}]
  • PARI
    a(n) = apply(x->(x + x%6), prime(n)); \\ Michel Marcus, Oct 27 2015

Formula

a(n) = A000040(n) + A039704(n). - Michel Marcus, Oct 27 2015
Showing 1-10 of 12 results. Next