A065965 Numbers k that divide A039916(k).
1, 2, 3, 9, 18, 21, 43, 59, 74, 557, 8292, 31898, 68595, 530152, 599960, 724192, 1373197, 1452846, 5125588, 5776688
Offset: 1
Examples
A039916(9) = 141592653 = 9*15732517, so 9 is a term of this sequence.
Crossrefs
Cf. A039916.
Programs
-
Maple
for n from 1 do if modp(A039916(n),n) = 0 then print(n); end if; end do: # R. J. Mathar, Oct 04 2014
-
Mathematica
picif=RealDigits[Pi-3,10,100000][[1]]; t=0; Do[t=10*t+picif[[j]]; If[Divisible[t,j],Print[j]],{j,1,Length[picif]}] (* Vaclav Kotesovec, Oct 06 2014 , 7 CPU hours with 10000000 *)
-
PARI
a065965(m,n) = {local(pr,pi,k); pr=default(realprecision,1); default(realprecision,n); p=Pi-3; for(k=m,n, if(truncate(p*10^k)%k==0,print1(k,","))); default(realprecision,pr); } a065965(1,2^15)
Extensions
a(12) from Klaus Brockhaus, Dec 10 2001
a(13)-a(16) from Jeff Heleen, Sep 28 2014
a(17)-a(20) from Vaclav Kotesovec, Oct 06 2014
Comments