a(1+8*k) = 2*10^(2k) + 37*(10^(2k)-1)/99,
a(2+8*k) = 3*10^(2k) + 73*(10^(2k)-1)/99,
a(3+8*k) = 5*10^(2k) + 37*(10^(2k)-1)/99,
a(4+8*k) = 7*10^(2k) + 37*(10^(2k)-1)/99,
a(5+8*k) = 23*10^(2k) + 73*(10^(2k)-1)/99,
a(6+8*k) = 37*10^(2k) + 37*(10^(2k)-1)/99,
a(7+8*k) = 53*10^(2k) + 73*(10^(2k)-1)/99,
a(8+8*k) = 73*10^(2k) + 73*(10^(2k)-1)/99, for k >= 0.
a(n) = ((2*n+7) mod 8 + dn3 - dn2)*10^dn_1 + floor((37+36*(dn2-dn1))*10^dn_1/99), where dn1 = floor((n+1)/4), dn2 = floor((n+2)/4), dn3 = floor((n+3)/4), dn_1 = floor((n-1)/4). [updated by
Hieronymus Fischer, Oct 02 2018]
a(24k + 0) = 73*(10^(6k-2) + (10^(6k-2)-1)/99), for k > 0.
a(24k + 2) = 3*(1245790*(10^(6k)-1)/999999 + 1),
a(24k + 4) = 7*(1053390*(10^(6k)-1)/999999 + 1),
a(24k + 6) = 37*(10^(6k) + (10^(6k)-1)/99),
a(24k + 8) = 73*(10^(6k) + (10^(6k)-1)/99),
a(24k + 9) = 3*(79124500*(10^(6k)-1)/999999 + 79),
a(24k + 11) = 3*(79124500*(10^(6k)-1)/999999 + 79 + 10^(6k+2)),
a(24k + 13) = 3*(791245000*(10^(6k)-1)/999999 + 791),
a(24k + 14) = 37*(10^(6k+2) + (10^(6k+2)-1)/99),
a(24k + 15) = 3*(791245000*(10^(6k)-1)/999999 + 791 + 10^(6k+3)),
a(24k + 16) = 73*(10^(6k+2) + (10^(6k+2)-1)/99),
a(24k + 17) = 7*(3391050000*(10^(6k)-1)/999999 + 3391),
a(24k + 18) = 7*(5339100000*(10^(6k)-1)/999999 + 5339),
a(24k + 20) = 3*(24579100000*(10^(6k)-1)/999999 + 24579),
a(24k + 22) = 37*(10^(6k+4) + (10^(6k+4)-1)/99), for k >= 0.
(End)
Recursion for n>8:
a(n) = 10*(1+a(n-4)) - a(n-4) mod 10.
G.f.: (2*x*(1+x^10) + 3*x^2*(1 + x^3 + x^5 + x^6) + 5*x^3*(1+x^6) + 7*x^4*(1+x^2))/((1-10*x^4)*(1-x^8)). [corrected by
Hieronymus Fischer, Sep 03 2012]
a(n) = a(n-1) + 9*a(n-4) - 9*a(n-5) + 10*a(n-8) - 10*a(n-9) for n > 9.
G.f.: x*(2*x^7 - 2*x^6 + 5*x^5 - 2*x^4 + 2*x^3 + 2*x^2 + x + 2)/((x - 1)*(x^4 + 1)*(10*x^4 - 1)). (End)
Comments