cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A040977 a(n) = binomial(n+5,5)*(n+3)/3.

Original entry on oeis.org

1, 8, 35, 112, 294, 672, 1386, 2640, 4719, 8008, 13013, 20384, 30940, 45696, 65892, 93024, 128877, 175560, 235543, 311696, 407330, 526240, 672750, 851760, 1068795, 1330056, 1642473, 2013760, 2452472, 2968064, 3570952, 4272576, 5085465
Offset: 0

Views

Author

Barry E. Williams, Dec 14 1999

Keywords

Comments

Sequence is n^2*(n^2-1)*(n^2-4)/360 if offset 3.
If a 2-set Y and an (n-3)-set Z are disjoint subsets of an n-set X then a(n-7) is the number of 7-subsets of X intersecting both Y and Z. - Milan Janjic, Sep 08 2007
6-dimensional square numbers, fifth partial sums of binomial transform of [1,2,0,0,0,...]. a(n) = Sum_{i=0..n} binomial(n+5,i+5)*b(i), where b(i) = [1,2,0,0,0,...]. - Borislav St. Borisov (b.st.borisov(AT)abv.bg), Mar 05 2009
Sequence of the absolute values of the z^2 coefficients divided by 5 of the polynomials in the GF2 denominators of A156925. See A157703 for background information. - Johannes W. Meijer, Mar 07 2009
2*a(n) is number of ways to place 5 queens on an (n+5) X (n+5) chessboard so that they diagonally attack each other exactly 10 times. The maximal possible attack number, p=binomial(k,2)=10 for k=5 queens, is achievable only when all queens are on the same diagonal. In graph-theory representation they thus form a corresponding complete graph. - Antal Pinter, Dec 27 2015
Ehrhart polynomial for the Chan-Robbins-Yuen polytope CRY_4. [De Loera et al.] - N. J. A. Sloane, Apr 16 2016
Coefficients in the terminating series identity 1 - 8*n/(n + 7) + 35*n*(n - 1)/((n + 7)*(n + 8)) - 112*n*(n - 1)*(n - 2)/((n + 7)*(n + 8)*(n + 9)) + ... = 0 for n = 1,2,3,.... Cf. A005585 and A050486. - Peter Bala, Feb 18 2019

References

  • Albert H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 194-196.
  • Herbert John Ryser, Combinatorial Mathematics, "The Carus Mathematical Monographs", No. 14, John Wiley and Sons, 1963, pp. 1-16.

Crossrefs

Partial sums of A005585.
Cf. A156925, A157703. - Johannes W. Meijer, Mar 07 2009

Programs

  • Magma
    [Binomial(n+5, 5) + 2*Binomial(n+5, 6): n in [0..35]]; // Vincenzo Librandi, Jun 09 2013
    
  • Maple
    with(combinat); A040977 := n->binomial(n+5,5)*(n+3)/3;
    a:=n->(sum((numbcomp(n,6)), j=4..n))/3:seq(a(n), n=6..38); # Zerinvary Lajos, Aug 26 2008
    nmax:=34; for n from 0 to nmax do fz(n):=product((1-m*z)^(n+1-m),m=1..n); c(n):= abs(coeff(fz(n),z,2))/5; end do: a:=n-> c(n): seq(a(n), n=2..nmax); # Johannes W. Meijer, Mar 07 2009
  • Mathematica
    CoefficientList[Series[(1 + x) / (1 - x)^7, {x, 0, 50}], x] (* Vincenzo Librandi, Jun 09 2013 *)
    LinearRecurrence[{7,-21,35,-35,21,-7,1},{1,8,35,112,294,672,1386},40] (* Harvey P. Dale, Feb 20 2016 *)
  • PARI
    vector(20,n,n--;2*binomial(n+6,6)-binomial(n+5,5)) \\ Derek Orr, May 05 2015
    
  • PARI
    Vec((1+x)/(1-x)^7 + O(x^100)) \\ Altug Alkan, Nov 29 2015

Formula

a(n) = (-1)^n*A053120(2*n+6, 6)/32, (1/32 of seventh unsigned column of Chebyshev T-triangle, zeros omitted).
G.f.: (1+x)/(1-x)^7.
a(n-3) = Sum_{i+j+k=n} i*j*k^2. - Benoit Cloitre, Nov 01 2002
a(n) = 2*binomial(n+6, 6) - binomial(n+5, 5). - Paul Barry, Mar 04 2003
a(n-3) = 1/(1!*2!*3!)*Sum_{1 <= x_1, x_2, x_3 <= n} |det V(x_1,x_2,x_3)| = 1/12*Sum_{1 <= i,j,k <= n} |(i-j)(i-k)(j-k)|, where V(x_1,x_2,x_3) is the Vandermonde matrix of order 3. - Peter Bala, Sep 13 2007
a(n) = binomial(n+5,5) + 2*binomial(n+5,6). - Borislav St. Borisov (b.st.borisov(AT)abv.bg), Mar 05 2009
a(n) = (n+1)*(n+2)*(n+3)^2*(n+4)*(n+5)/360. - Wesley Ivan Hurt, May 05 2015
a(n) = A000579(n+5) + A000579(n+6). - R. J. Mathar, Nov 29 2015
Sum_{n>=0} 1/a(n) = 15*Pi^2 - 1175/8. - Jaume Oliver Lafont, Jul 11 2017
Sum_{n>=0} (-1)^n/a(n) = 15*Pi^2/2 - 585/8. - Amiram Eldar, Jan 24 2022