cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A041061 Denominators of continued fraction convergents to sqrt(37).

Original entry on oeis.org

1, 12, 145, 1752, 21169, 255780, 3090529, 37342128, 451196065, 5451694908, 65871534961, 795910114440, 9616792908241, 116197425013332, 1403985893068225, 16964028141832032, 204972323595052609, 2476631911282463340, 29924555258984612689, 361571295019097815608
Offset: 0

Views

Author

Keywords

Comments

Sqrt(37) = 6.08276253... = 12/2 + 12/145 + 12/(145*21169) + 12/(21169*3090529) + ... - Gary W. Adamson, Jun 13 2008
For positive n, a(n) equals the permanent of the n X n tridiagonal matrix with 12's along the main diagonal and 1's along the superdiagonal and the subdiagonal. - John M. Campbell, Jul 08 2011
a(n) equals the number of words of length n on alphabet {0,1,...,12} avoiding runs of zeros of odd lengths. - Milan Janjic, Jan 28 2015
From Michael A. Allen, Apr 02 2023: (Start)
Also called the 12-metallonacci sequence; the g.f. 1/(1-k*x-x^2) gives the k-metallonacci sequence.
a(n) is the number of tilings of an n-board (a board with dimensions n X 1) using unit squares and dominoes (with dimensions 2 X 1) if there are 12 kinds of squares available. (End)
Take any recurrence (t) of the form (12,1). Then a(n) = (t(i-n)*(-1)^n + t(i+n+2))/(t(i) + t(i+2)) always applies for integer i >= n >= 1. - Klaus Purath, Aug 02 2025

Crossrefs

Cf. A243399.
Row n=12 of A073133, A172236 and A352361 and column k=12 of A157103.

Programs

  • Mathematica
    Denominator[Convergents[Sqrt[37],30]] (* or *) LinearRecurrence[{12,1},{1,12},30] (* Harvey P. Dale, May 26 2014 *)
  • Sage
    [lucas_number1(n,12,-1) for n in range(1, 18)] # Zerinvary Lajos, Apr 28 2009

Formula

a(n) = F(n, 12), the n-th Fibonacci polynomial evaluated at x=12. - T. D. Noe, Jan 19 2006
From Philippe Deléham, Nov 21 2008: (Start)
a(n) = 12*a(n-1) + a(n-2), n>1; a(0)=1, a(1)=12.
G.f.: 1/(1 - 12*x - x^2). (End)
a(n) = ((6+sqrt(37))^(n+1) - (6-sqrt(37))^(n+1))/(2*sqrt(37)). - Rolf Pleisch, May 14 2011
a(2*n) = a(n-1)^2 + a(n)^2 = A097730(n), a(2*n+1) = 12*A097728(n). - Klaus Purath, Aug 02 2025
E.g.f.: exp(6*x)*(cosh(sqrt(37)*x) + 6*sinh(sqrt(37)*x)/sqrt(37)). - Stefano Spezia, Aug 09 2025

A040030 Continued fraction for sqrt(37).

Original entry on oeis.org

6, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12
Offset: 0

Views

Author

Keywords

Examples

			6.08276253029821968899968... = 6 + 1/(12 + 1/(12 + 1/(12 + 1/(12 + ...)))). - _Harry J. Smith_, Jun 04 2009
		

References

  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 276.

Crossrefs

Cf. A010491 (decimal expansion), A041060/A041061 (convergents), A248263 (Egyptian fraction).

Programs

  • Maple
    Digits := 100: convert(evalf(sqrt(N)),confrac,90,'cvgts'):
  • Mathematica
    ContinuedFraction[Sqrt[37],300] (* Vladimir Joseph Stephan Orlovsky, Mar 06 2011 *)
    PadRight[{6},120,{12}] (* Harvey P. Dale, Jan 02 2017 *)
  • PARI
    { allocatemem(932245000); default(realprecision, 44000); x=contfrac(sqrt(37)); for (n=0, 20000, write("b040030.txt", n, " ", x[n+1])); } \\ Harry J. Smith, Jun 04 2009

Formula

From Elmo R. Oliveira, Feb 06 2024: (Start)
a(n) = 12 for n >= 1.
G.f.: 6*(1+x)/(1-x).
E.g.f.: 12*exp(x) - 6.
a(n) = 6*A040000(n) = 3*A040002(n) = 2*A040006(n). (End)

A089926 a(n) = 12*a(n-1) + a(n-2), a(0)=1, a(1)=6.

Original entry on oeis.org

1, 6, 73, 882, 10657, 128766, 1555849, 18798954, 227143297, 2744518518, 33161365513, 400680904674, 4841332221601, 58496667563886, 706801342988233, 8540112783422682, 103188154744060417, 1246797969712147686
Offset: 0

Views

Author

Paul Barry, Nov 15 2003

Keywords

Comments

The family of recurrences a(n) = 2*k*a(n-1) + a(n-2), a(0)=1, a(1)=k has solution a(n) = ((k+sqrt(k^2+1))^n + (k-sqrt(k^2+1))^n)/2; a(n) = Sum_{j=0..floor(n/2)} C(n,2k)*(k^2+1)^jk^(n-2j); a(n) = T(n,ki)*(-i)^n; e.g.f. exp(kx)*cosh(sqrt(k^2+1)*x).

Crossrefs

Essentially the same as A041060.

Formula

E.g.f.: exp(6x)*cosh(sqrt(37)x);
a(n) = ((6+sqrt(37))^n + (6-sqrt(37))^n)/2;
a(n) = Sum_{k=0..floor(n/2)} C(n, 2k)*37^k*6^(n-2k).
a(n) = T(n, 6i)*(-i)^n with T(n, x) Chebyshev's polynomials of the first kind (see A053120) and i^2 = -1.
G.f.: (1-6x)/(1-12*x-x^2). - Philippe Deléham, Nov 21 2008
Showing 1-3 of 3 results.