cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A041085 Denominators of continued fraction convergents to sqrt(50).

Original entry on oeis.org

1, 14, 197, 2772, 39005, 548842, 7722793, 108667944, 1529074009, 21515704070, 302748930989, 4260000737916, 59942759261813, 843458630403298, 11868363584907985, 167000548819115088, 2349876047052519217, 33065265207554384126, 465263588952813896981
Offset: 0

Views

Author

Keywords

Comments

For positive n, a(n) equals the permanent of the n X n tridiagonal matrix with 14's along the main diagonal, and 1's along the superdiagonal and the subdiagonal. - John M. Campbell, Jul 08 2011
a(n) equals the number of words of length n on alphabet {0,1,...,14} avoiding runs of zeros of odd lengths. - Milan Janjic, Jan 28 2015
From Michael A. Allen, Apr 30 2023: (Start)
Also called the 14-metallonacci sequence; the g.f. 1/(1-k*x-x^2) gives the k-metallonacci sequence.
a(n) is the number of tilings of an n-board (a board with dimensions n X 1) using unit squares and dominoes (with dimensions 2 X 1) if there are 14 kinds of squares available. (End)

Crossrefs

Row n=14 of A073133, A172236 and A352361 and column k=14 of A157103.

Programs

  • Magma
    [n le 2 select (14)^(n-1) else 14*Self(n-1) +Self(n-2): n in [1..30]]; // Vincenzo Librandi, Nov 17 2012
    
  • Maple
    with(combinat): seq(fibonacci(3*n+3,2)/5, n=0..17); # Zerinvary Lajos, Apr 20 2008
  • Mathematica
    LinearRecurrence[{14, 1}, {1, 14}, 30] (* Vincenzo Librandi, Nov 17 2012 *)
    Table[Fibonacci[3n + 3, 2]/5, {n, 0, 20}] (* Vladimir Reshetnikov, Sep 16 2016 *)
    Convergents[Sqrt[50],20]//Denominator (* Harvey P. Dale, Aug 16 2025 *)
  • SageMath
    A041085=BinaryRecurrenceSequence(14,1,1,14)
    [A041085(n) for n in range(31)] # G. C. Greubel, Sep 29 2024

Formula

a(n) = round((7+5*sqrt(2))*a(n-1)). - Vladeta Jovovic, Jun 15 2003
From Paul Barry, Feb 06 2004: (Start)
a(n) = A000129(3*n+3)/5.
a(n) = (1/20)*((10+7*sqrt(2))*(1+sqrt(2))^(3*n) + (10-7*sqrt(2))*(1-sqrt(2))^(3*n)).
a(n-1) = Sum_{i=0..n} Sum_{j=0..n-i} (n!/(i!*j!*(n-i-j)!))*A000129(2*n-i)/5. (End)
a(n) = Fibonacci(n+1, 14), the n-th Fibonacci polynomial evaluated at x=14. - T. D. Noe, Jan 19 2006
From Philippe Deléham, Nov 03 2008: (Start)
a(n) = 14*a(n-1) + a(n-2); a(0)=1, a(1)=14.
G.f.: 1/(1-14*x-x^2). (End)
a(n) = ((7+5*sqrt(2))^(n+1) - (7-5*sqrt(2))^(n+1))/(10*sqrt(2)). - Gerry Martens, Jul 11 2015

Extensions

Additional term from Colin Barker, Nov 12 2013