cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A040103 Duplicate of A045323.

Original entry on oeis.org

2, 3, 7, 11, 17, 19, 23, 31, 41, 43, 47, 59, 67, 71, 73, 79, 83, 89, 97, 103, 107, 113, 127
Offset: 0

Views

Author

Keywords

A007521 Primes of the form 8k + 5.

Original entry on oeis.org

5, 13, 29, 37, 53, 61, 101, 109, 149, 157, 173, 181, 197, 229, 269, 277, 293, 317, 349, 373, 389, 397, 421, 461, 509, 541, 557, 613, 653, 661, 677, 701, 709, 733, 757, 773, 797, 821, 829, 853, 877, 941, 997, 1013, 1021, 1061, 1069, 1093, 1109, 1117, 1181, 1213
Offset: 1

Views

Author

Keywords

Comments

Primes of the form 4x^2 - 4xy + 5y^2 with x and y nonnegative. - T. D. Noe, May 08 2005
Prime numbers 2k+1 with k even such that 2k+1 | 2^k+1. - Hilko Koning, Jan 21 2022

References

  • Milton Abramowitz and Irene A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 870.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A010051.
Subsequence of A004770; see also A045323.

Programs

  • Haskell
    a007521 n = a007521_list !! (n-1)
    a007521_list = filter ((== 1). a010051) a004770_list
    -- Reinhard Zumkeller, Aug 17 2012
    
  • Magma
    [p: p in PrimesUpTo(2000) | p mod 8 eq 5]; // Vincenzo Librandi, Jun 26 2014
    
  • Mathematica
    Select[8Range[0, 160] + 5, PrimeQ]  (* Harvey P. Dale, Apr 22 2011 *)
  • PARI
    list(lim)=select(n->n%8==5,primes(primepi(lim))) \\ Charles R Greathouse IV, Jul 25 2011
    
  • Python
    from sympy import isprime
    print(list(filter(isprime, range(5, 1214, 8)))) # Michael S. Branicky, May 13 2021

A004776 Numbers not congruent to 5 (mod 8).

Original entry on oeis.org

0, 1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24, 25, 26, 27, 28, 30, 31, 32, 33, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 46, 47, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 59, 60, 62, 63, 64, 65, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 78
Offset: 1

Views

Author

Keywords

Comments

Also, numbers whose binary expansion does not end in 101.
Numbers that are congruent to {0, 1, 2, 3, 4, 6, 7} mod 8. - Wesley Ivan Hurt, Jul 22 2016

Crossrefs

Cf. A004770 (complement), A045323 (primes).

Programs

Formula

Numbers that are congruent to {0, 1, 2, 3, 4, 6, 7} mod 8.
G.f.: x^2*(1+x+x^2+x^3+2*x^4+x^5+x^6) / ((x^6+x^5+x^4+x^3+x^2+x+1)*(x-1)^2). - R. J. Mathar, Oct 25 2011
a(n) = n + floor((n-6)/7). - M. F. Hasler, Nov 02 2013
From Wesley Ivan Hurt, Jul 22 2016: (Start)
a(n) = a(n-1) + a(n-7) - a(n-8) for n>8; a(n) = a(n-7) + 8 for n>7.
a(n) = (56*n - 63 + (n mod 7) - 6*((n+1) mod 7) + ((n+2) mod 7) + ((n+3) mod 7) + ((n+4) mod 7) + ((n+5) mod 7) + ((n+6) mod 7))/49.
a(7k) = 8k-1, a(7k-1) = 8k-2, a(7k-2) = 8k-4, a(7k-3) = 8k-5, a(7k-4) = 8k-6, a(7k-5) = 8k-7, a(7k-6) = 8k-8. (End)

Extensions

Edited by M. F. Hasler, Nov 02 2013

A120347 Numerator of Sum_{k=1..n-1} 1/k^n.

Original entry on oeis.org

1, 9, 1393, 257875, 47463376609, 940908897061, 972213062238348973121, 7727182467755471289426059, 10338014371627802833957102351534201, 26038773205374138944970092886340352227, 205885410277133543091182509665217407908365393153956577
Offset: 2

Views

Author

Alexander Adamchuk, Aug 16 2006, Oct 31 2006

Keywords

Comments

Prime p>2 divides a(p). p^3 divides a(p) for prime p>3. p divides a((p+1)/2) for prime p = {7,11,17,19,23,31,41,43,47,59,67,71,73,79,83,89,97,103,...} = all primes excluding 2 and 3 from A045323[n] Primes congruent to {1, 2, 3, 7} mod 8.
a(n) = Numerator( H(n-1,n) ), where H(k,r) = Sum_{i=1..k} 1/i^r is the generalized harmonic number.

Crossrefs

Cf. A045323, A120289, A120352 (a(prime(n))), A119722 (a(prime(n))/prime(n)^3).

Programs

  • Mathematica
    Table[Numerator[Sum[1/k^n,{k,1,n-1}]],{n,2,15}]

Formula

a(n) = Numerator(Sum_{k=1..n-1} 1/k^n). a(n) = Numerator[Zeta[n] - Zeta[n,n]].
Showing 1-4 of 4 results.