cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A166104 Natural numbers whose prime factors are all congruent to 3 or 5 mod 6 (i.e., are in the sequence A045410).

Original entry on oeis.org

1, 3, 5, 9, 11, 15, 17, 23, 25, 27, 29, 33, 41, 45, 47, 51, 53, 55, 59, 69, 71, 75, 81, 83, 85, 87, 89, 99, 101, 107, 113, 115, 121, 123, 125, 131, 135, 137, 141, 145, 149, 153, 159, 165, 167, 173, 177, 179, 187, 191, 197, 205, 207, 213, 225, 227, 233, 235, 239
Offset: 1

Views

Author

Antti Karttunen, Oct 13 2009

Keywords

Comments

1 is included, as it has no prime factors at all, thus no prime factors outside of A045410.

Crossrefs

See the conjecture at A166103. Cf. A045410.

A045309 Primes congruent to {0, 2} mod 3.

Original entry on oeis.org

2, 3, 5, 11, 17, 23, 29, 41, 47, 53, 59, 71, 83, 89, 101, 107, 113, 131, 137, 149, 167, 173, 179, 191, 197, 227, 233, 239, 251, 257, 263, 269, 281, 293, 311, 317, 347, 353, 359, 383, 389, 401, 419, 431, 443, 449, 461, 467, 479, 491, 503, 509, 521, 557, 563
Offset: 1

Views

Author

Keywords

Comments

Also, primes p such that the equation x^3 == y (mod p) has a unique solution x for every choice of y. - Klaus Brockhaus, Mar 02 2001; Michel Drouzy (DrouzyM(AT)noos.fr), Oct 28 2001
2, 3 and primes congruent to 5 mod 6. - Chai Wah Wu, Apr 28 2025

Crossrefs

Programs

  • Magma
    [ p: p in PrimesUpTo(1000) | #[ x: x in ResidueClassRing(p) | x^3 eq 2 ] eq 1 ]; // Klaus Brockhaus, Apr 11 2009
    
  • Mathematica
    Select[Prime[Range[150]],MemberQ[{0,2},Mod[#,3]]&] (* Harvey P. Dale, Jun 14 2011 *)
  • PARI
    is(n)=isprime(n) && n%3!=1 \\ Charles R Greathouse IV, Apr 20 2015
    
  • Python
    from itertools import count, islice
    from sympy import isprime
    def A045309_gen(): # generator of terms
        yield from (2,3)
        yield from filter(isprime, count(5,6))
    A045309_list = list(islice(A045309_gen(),48)) # Chai Wah Wu, Apr 28 2025

Formula

a(n) ~ 2n log n. - Charles R Greathouse IV, Apr 20 2015

Extensions

Edited by N. J. A. Sloane, Apr 11 2009

A045375 Primes congruent to {1, 2} mod 6.

Original entry on oeis.org

2, 7, 13, 19, 31, 37, 43, 61, 67, 73, 79, 97, 103, 109, 127, 139, 151, 157, 163, 181, 193, 199, 211, 223, 229, 241, 271, 277, 283, 307, 313, 331, 337, 349, 367, 373, 379, 397, 409, 421, 433, 439, 457, 463, 487, 499, 523, 541, 547, 571, 577, 601, 607, 613, 619, 631, 643, 661, 673, 691
Offset: 1

Views

Author

Keywords

Comments

Apart from initial term, same as A002476 = A007645 \ {2} = A045331 \ {2,3}. - M. F. Hasler, Apr 25 2008
Primes of the form 6*m - 3/2 -+ 5/2. A045375 UNION A045410 = A000040. - Juri-Stepan Gerasimov, Jan 28 2010

Crossrefs

Cf. A000040 (the primes), A045410 (the primes of the form 6*k-2-+1). - Juri-Stepan Gerasimov, Jan 28 2010

Programs

Extensions

More terms from Vincenzo Librandi, Dec 18 2010

A258801 Carmichael numbers divisible by 3.

Original entry on oeis.org

561, 62745, 656601, 11921001, 26719701, 45318561, 174352641, 230996949, 662086041, 684106401, 689880801, 1534274841, 1848112761, 2176838049, 3022354401, 5860426881, 6025532241, 6097778961, 7281824001, 7397902401, 10031651841, 10054063041, 10585115841
Offset: 1

Views

Author

Fred Patrick Doty, Jun 10 2015

Keywords

Comments

Most Carmichael numbers are congruent to 1 modulo 6. Those that are not are observed to include numbers that are 5 modulo 6 as well as multiples of 3.
Subsequence of A008585 and of A205947.
No member of this sequence is divisible by any prime of the form 6k+1, hence all prime factors for this sequence are members of A045410.

Crossrefs

Cf. A002997 (Carmichael numbers), A205947 (Carmichael numbers not congruent to 1 modulo 6).
Cf. A008585 (3*n).
Cf. A045410 (primes not congruent to 1 modulo 6).

Programs

  • Maple
    select(t -> t mod numtheory:-lambda(t) = 1, [seq(6*k+3,k=1..10^6)]); # Robert Israel, Jul 12 2015
  • Mathematica
    Cases[Range[555,10^6,6],n_/;Mod[n,CarmichaelLambda[n]]==1]
  • PARI
    Korselt(n)=my(f=factor(n)); for(i=1, #f[, 1], if(f[i, 2]>1||(n-1)%(f[i, 1]-1), return(0))); 1
    is(n)=n%6==3 && Korselt(n) && n>9 \\ Charles R Greathouse IV, Jul 20 2015

A171715 Absolute value of (n-th prime of form 3*m-1 minus n-th prime of form 3*k+1/2+-1/2).

Original entry on oeis.org

1, 2, 2, 2, 8, 8, 2, 14, 14, 14, 8, 14, 14, 8, 20, 26, 20, 20, 14, 14, 20, 20, 20, 26, 2, 8, 32, 26, 26, 44, 44, 50, 44, 38, 50, 26, 26, 38, 26, 32, 32, 20, 26, 20, 38, 38, 56, 62, 56, 68, 68, 80, 50, 50, 50, 44, 50, 62, 56, 50, 62, 74, 74, 62, 68, 56, 50, 44, 50, 50, 32, 44, 38
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Dec 17 2009, Feb 09 02 2010

Keywords

Comments

Also, the absolute value of (n-th generalized cuban prime minus n-th generalized non-cuban prime).
Or, the absolute value of n-th prime of form 6*m-3/2+-5/2 minus n-th prime of form 6*k-2+-1.

Examples

			a(1) = abs(3*1-1-(3*1+1/2-1/2)) = 1; a(2) = abs(3*2-1-(3*2+1/2+1/2)) = 2.
		

Crossrefs

Programs

  • Maple
    A003627 := proc(n) if n <= 2 then op(n,[2,5]) ; ; else for a from procname(n-1)+2 by 2 do if isprime(a) and (a mod 3) =2 then return a ; end if; end do: end if; end proc:
    A007645 := proc(n) if n <= 2 then op(n,[3,7]) ; ; else for a from procname(n-1)+2 by 2 do if isprime(a) and (a mod 3) <> 2 then return a ; end if; end do: end if; end proc:
    A171715 := proc(n) abs(A003627(n)-A007645(n)) ; end proc: # R. J. Mathar, Apr 24 2010
  • Mathematica
    Module[{nn=500,p1,p2,len},p1=Select[3*Range[nn]-1,PrimeQ];p2=Select[Flatten[#+{0,1}&/@ (3*Range[nn])],PrimeQ];len=Min[Length[p1],Length[p2]]; Abs[#[[1]]-#[[2]]]&/@ Thread[ {Take[p1,len],Take[p2,len]}]] (* Harvey P. Dale, Aug 29 2023 *)

Formula

a(n) = abs(A003627(n)-A007645(n)) = abs(A045375(n)-A045410(n)).

Extensions

Entries checked by R. J. Mathar, Apr 24 2010

A205947 Carmichael numbers not congruent to 1 modulo 6.

Original entry on oeis.org

561, 2465, 62745, 162401, 656601, 1909001, 5444489, 11921001, 19384289, 26719701, 45318561, 84350561, 151530401, 174352641, 221884001, 230996949, 275283401, 434932961, 662086041, 684106401, 689880801, 710382401
Offset: 1

Views

Author

Keywords

Comments

These numbers are very sparse; most Carmichael numbers are 1 mod 6. - Charles R Greathouse IV, May 02 2012
Not known to be infinite, see Matomäki. - Charles R Greathouse IV, Jun 13 2012
From Robert Israel, Jul 20 2015: (Start)
Now known to be infinite, see Wright.
No member of this sequence is divisible by any prime of the form 6k+1, hence all prime factors for this sequence are members of A045410. (End)

Crossrefs

Programs

  • Maple
    korselt:= proc(n) uses numtheory; local p;
      if isprime(n) or not issqrfree(n) then return false fi;
      for p in factorset(n) do
         if n-1 mod (p-1) <> 0 then return false fi
      od;
      true
    end proc:
    select(korselt, [seq(seq(6*i+j,j=[3,5]),i=1..10^5)]); # Robert Israel, Jul 20 2015
  • Mathematica
    Select[Range[100000], !PrimeQ[#] && IntegerQ[(#-1)/CarmichaelLambda[#]] && !Mod[#,6]==1&]
  • PARI
    Korselt(n,f=factor(n))=for(i=1,#f[,1],if(f[i,2]>1||(n-1)%(f[i,1]-1),return(0)));1
    list(lim)={
      my(v=List(),p=2);
      forstep(n=561,lim,[12,6],
        if(Korselt(n),listput(v,n))
      );
      forprime(q=3,lim,
        forstep(n=p+if(p%6<5,4,6),q-2,6,
          if(Korselt(n),listput(v,n))
        );
        p=q
      );
      vecsort(Vec(v))
    }; \\ Charles R Greathouse IV, Apr 25 2012

Formula

Wright shows that there are at least x^(K/(log log log x)^2) terms up to x, for an explicitly computable (though not computed) constant K. - Charles R Greathouse IV, Jul 20 2015

A172181 Odd composites not of the form 6k + 1.

Original entry on oeis.org

9, 15, 21, 27, 33, 35, 39, 45, 51, 57, 63, 65, 69, 75, 77, 81, 87, 93, 95, 99, 105, 111, 117, 119, 123, 125, 129, 135, 141, 143, 147, 153, 155, 159, 161, 165, 171, 177, 183, 185, 189, 195, 201, 203, 207, 209, 213, 215, 219, 221, 225, 231, 237, 243, 245, 249, 255
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jan 28 2010

Keywords

Crossrefs

Cf. A005408, A045375, A045410. Odd complement is A091300.

Programs

  • Mathematica
    Union[6Range[42] + 3, Select[6Range[43] - 1, Not[PrimeQ[#]] &]] (* Alonso del Arte, Jun 05 2011 *)
  • PARI
    select(n->(n%6==3 && n>3) || (n%6==5 && !isprime(n)), vector(1000,i,i)) \\ Charles R Greathouse IV, Jun 05 2011

Extensions

Entries checked by R. J. Mathar, May 19 2010
Showing 1-7 of 7 results.