A045468 Primes congruent to {1, 4} mod 5.
11, 19, 29, 31, 41, 59, 61, 71, 79, 89, 101, 109, 131, 139, 149, 151, 179, 181, 191, 199, 211, 229, 239, 241, 251, 269, 271, 281, 311, 331, 349, 359, 379, 389, 401, 409, 419, 421, 431, 439, 449, 461, 479, 491
Offset: 1
References
- Hardy and Wright, An Introduction to the Theory of Numbers, Chap. X, p. 150, Oxford University Press, Fifth edition.
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
- Caleb Ji, Tanya Khovanova, Robin Park, and Angela Song, Chocolate Numbers, arXiv:1509.06093 [math.CO], 2015.
- Caleb Ji, Tanya Khovanova, Robin Park, and Angela Song, Chocolate Numbers, Journal of Integer Sequences, Vol. 19 (2016), #16.1.7.
- Index to sequences related to decomposition of primes in quadratic fields
Programs
-
Haskell
a045468 n = a045468_list !! (n-1) a045468_list = [x | x <- a047209_list, a010051 x == 1] -- Reinhard Zumkeller, Jan 07 2012
-
Magma
[ p: p in PrimesUpTo(1000) | p mod 5 in {1,4} ]; // Vincenzo Librandi, Aug 13 2012
-
Maple
for n from 1 to 500 do if(isprime(n)) and (n^6 mod 210=1) then print(n) fi od; # Gary Detlefs, Dec 29 2011
-
Mathematica
lst={};Do[p=Prime[n];If[Mod[p,5]==1||Mod[p,5]==4,AppendTo[lst,p]],{n,6!}];lst (* Vladimir Joseph Stephan Orlovsky, Feb 26 2009 *) Select[Prime[Range[200]],MemberQ[{1,4},Mod[#,5]]&] (* Vincenzo Librandi, Aug 13 2012 *)
-
PARI
list(lim)=select(n->n%5==1||n%5==4,primes(primepi(lim))) \\ Charles R Greathouse IV, Jul 25 2011
Comments