cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A166024 Define dsf(n) = A045503(n) = n_1^{n_1}+n_2^{n_2}+n_3^{n_3} + n_m^{n_m}, where {n_1,n_2,n_3,...n_m} is the list of the decimal digits of n. Starting with a(1) = 421845123, a(n+1) = dsf(a(n)).

Original entry on oeis.org

421845123, 16780890, 421845123, 16780890, 421845123, 16780890, 421845123, 16780890, 421845123, 16780890, 421845123, 16780890, 421845123, 16780890, 421845123, 16780890, 421845123, 16780890, 421845123, 16780890, 421845123, 16780890, 421845123, 16780890
Offset: 1

Views

Author

Ryohei Miyadera, Satoshi Hashiba and Koichiro Nishimura, Oct 04 2009

Keywords

Comments

In fact there are only 8 loops among all the nonnegative integers for the "dsf" function that we defined.
Periodic with period 2.

Examples

			dsf(421845123) = 16780890 and dsf(16780890) = 421845123, so these 2 numbers make a loop for the function dsf.
		

Crossrefs

Programs

  • Mathematica
    dsf[n_] := Block[{m = n, t}, t = IntegerDigits[m]; Sum[Max[1, t[[k]]]^t[[k]], {k, Length[t]}]]; NestList[dsf, 421845123,4]
    LinearRecurrence[{0, 1},{421845123, 16780890},24] (* Ray Chandler, Aug 25 2015 *)

Formula

a(n+1) = dsf(a(n)).

Extensions

Comment and editing by Charles R Greathouse IV, Aug 02 2010
Second sentence of Name moved to Example by Michael De Vlieger, Aug 24 2023

A108302 Concatenate n and the sum of the digits of n raised to their own power (A045503).

Original entry on oeis.org

1, 11, 24, 327, 4256, 53125, 646656, 7823543, 816777216, 9387420489, 102, 112, 125, 1328, 14257, 153126, 1646657, 17823544, 1816777217, 19387420490, 205, 215, 228, 2331, 24260, 253129, 2646660, 27823547, 2816777220, 29387420493, 3028, 3128
Offset: 0

Views

Author

Jason Earls, Jun 29 2005

Keywords

Examples

			a(15)=153126 because 1^1 + 5^5 = 3126.
		

Programs

  • Mathematica
    cnsd[n_]:=Module[{idn=IntegerDigits[n]/.(0->1),c},c=Total[idn^idn];n*10^IntegerLength[c]+c]; Join[{1},cnsd/@Range[40]] (* Harvey P. Dale, Nov 25 2016 *)

A166072 Define dsf(n) = A045503(n) = n_1^{n_1}+n_2^{n_2}+n_3^{n_3} + n_m^{n_m}, where {n_1,n_2,n_3,...n_m} is the list of the decimal digits of n. dsf(809265896) = 808491852 and dsf(808491852) = 437755524,...,dsf(792488396) = 809265896, so these 8 numbers make a loop for the function dsf.

Original entry on oeis.org

809265896, 808491852, 437755524, 1657004, 873583, 34381154, 16780909, 792488396, 809265896, 808491852, 437755524, 1657004, 873583, 34381154, 16780909, 792488396, 809265896, 808491852, 437755524, 1657004, 873583
Offset: 1

Views

Author

Ryohei Miyadera, Satoshi Hashiba and Koichiro Nishimura, Oct 06 2009

Keywords

Comments

In fact there are only 8 loops among all the nonnegative integers for the "dsf" function that we defined. We have discovered this fact through calculations using Mathematica and general-purpose languages.
Periodic with period 8.

Crossrefs

Programs

  • Mathematica
    dsf[n_] := Block[{m = n, t}, t = IntegerDigits[m]; Sum[Max[1, t[[k]]]^t[[k]], {k, Length[t]}]]; NestList[dsf, 809265896,16]
    LinearRecurrence[{0, 0, 0, 0, 0, 0, 0, 1},{809265896, 808491852, 437755524, 1657004, 873583, 34381154, 16780909, 792488396},24] (* Ray Chandler, Aug 25 2015 *)

Formula

a(n+1) = dsf(a(n)).

Extensions

Edited by Charles R Greathouse IV, Aug 02 2010
Extended by Ray Chandler, Aug 25 2015

A108303 Numbers n such that concatenating n and the sum of the digits of n raised to their own power (A045503) produces a prime.

Original entry on oeis.org

1, 34, 41, 43, 52, 60, 67, 85, 101, 110, 113, 122, 126, 128, 146, 148, 150, 155, 168, 175, 184, 186, 191, 202, 208, 212, 234, 241, 252, 267, 287, 300, 355, 397, 404, 423, 432, 445, 469, 511, 602, 606, 620, 627, 634, 641, 656, 680, 685, 750, 762, 793, 806, 919
Offset: 1

Views

Author

Jason Earls, Jun 29 2005

Keywords

Comments

2^2560 produces a 782 digit prime (certified).
For purposes of this sequence, zero raised to the zero power = 1. - Harvey P. Dale, Feb 16 2020

Examples

			a(5)=52 because 5^5 + 2^2 = 3129 and 523129 is prime.
		

Crossrefs

Cf. A045503.

Programs

  • Mathematica
    cnsdQ[n_]:=Module[{idn=IntegerDigits[n]/.(0->1),c},c=Total[idn^idn];PrimeQ[n*10^IntegerLength[c]+c]]; Select[Range[1000],cnsdQ] (* Harvey P. Dale, Feb 16 2020 *)

A108406 Numbers k such that concatenating k and the sum of the digits of k raised to their own power (A045503) produces a square.

Original entry on oeis.org

0, 211, 220, 235, 20403, 111416, 1011231, 3444142, 10003400, 22303600, 31151021, 53231032, 121542025, 126423126, 202032110, 243425212, 302434003, 311544033, 324231521, 334130241, 375607602, 406221650, 561620561, 662033363, 1053045074
Offset: 1

Views

Author

Jason Earls, Jul 04 2005

Keywords

Examples

			235 is a term because 2^2 + 3^3 + 5^5 = 3156 and 2353156 = 1534^2.
		

Crossrefs

Programs

  • PARI
    f(n)=if(n, n=digits(n); sum(i=1, #n, n[i]^n[i]), 1); \\ A045503
    isok(k) = issquare(fromdigits(concat(digits(k), digits(f(k))))); \\ Michel Marcus, Mar 05 2024

Extensions

More terms from Ryan Propper, Jul 07 2005

A046253 Equal to the sum of its nonzero digits raised to its own power.

Original entry on oeis.org

0, 1, 3435, 438579088
Offset: 1

Views

Author

Patrick De Geest, May 15 1998

Keywords

Comments

A variant of Münchausen numbers, cf. A166623.
The sequence is finite, because the sum can't exceed 9^9*L < 10^9*L, where L is the number of digits, and for L > 10 this is less than the number N >= 10^(L-1). - M. F. Hasler, Oct 01 2024

Examples

			3435 = 3^3 + 4^4 + 3^3 + 5^5.
		

References

  • J. S. Madachy, "Madachy's Mathematical Recreations", Dover N.Y., pp. 163-175.
  • C. A. Pickover, "Keys to Infinity", Wiley 1995, Ch. 22, pp. 169-171.
  • Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, page 37.
  • David Wells, "Curious and Interesting Numbers", Penguin 1988, pp. 169, 190.

Crossrefs

Fixed points of A045512. See also A045503 (includes zero digits).

Programs

  • C
    // See Bailey and Hutchens links
    
  • Mathematica
    Select[Range[0,10000],Total[#^#&/@DeleteCases[IntegerDigits@#,0]]==#&]  (* Giorgos Kalogeropoulos, May 08 2019 *)
  • PARI
    select( {is_A046253(n)=n==A045512(n)}, [0..10^4]) \\ To find the 4th solution, multiply the set by 51817. - M. F. Hasler, Oct 01 2024

A045512 If decimal expansion of n is ab...d, a(n) = a^a + b^b + ... + d^d (ignoring any 0's).

Original entry on oeis.org

0, 1, 4, 27, 256, 3125, 46656, 823543, 16777216, 387420489, 1, 2, 5, 28, 257, 3126, 46657, 823544, 16777217, 387420490, 4, 5, 8, 31, 260, 3129, 46660, 823547, 16777220, 387420493, 27, 28, 31, 54, 283, 3152, 46683, 823570, 16777243, 387420516, 256, 257, 260
Offset: 0

Views

Author

Keywords

Crossrefs

Cf. A045503.
See A046253 for fixed points.

Programs

  • Maple
    a:= n-> add(`if`(i=0, 0, i^i), i=convert(n,base,10)):
    seq(a(n), n=0..42);  # Alois P. Heinz, Apr 29 2022
  • Mathematica
    p[n_]:=Module[{idn=Select[IntegerDigits[n],#>0&]},Total[idn^idn]]; Array[p, 40,0] (* Harvey P. Dale, Dec 13 2012 *)
  • PARI
    apply( {A045512(n)=vecsum([d^d|d<-digits(n),d])}, [0..44]) \\ M. F. Hasler, Oct 01 2024

Extensions

Checked by Neven Juric (neven.juric(AT)apis-it.hr), Feb 04 2008

A165942 For a nonnegative integer n, define dsf(n) = n_1^{n_1}+n_2^{n_2}+n_3^{n_3} + n_m^{n_m}, where {n_1,n_2,n_3,...n_m} lists digits of n. Then starting with a(1) = 3418, a(n+1) = dsf(a(n)).

Original entry on oeis.org

3418, 16777500, 2520413, 3418, 16777500, 2520413, 3418, 16777500, 2520413, 3418, 16777500, 2520413, 3418, 16777500, 2520413, 3418, 16777500, 2520413, 3418, 16777500, 2520413, 3418, 16777500, 2520413, 3418, 16777500, 2520413, 3418, 16777500, 2520413
Offset: 1

Views

Author

Ryohei Miyadera, Daisuke Minematsu and Taishi Inoue, Oct 01 2009

Keywords

Comments

Period 3. In fact there are only 8 such loops among all the nonnegative integers for the "dsf" function that we defined.

Examples

			a(2) = dsf(a(1)) = dsf(3418) = 3^3+4^4+1^1+8^8 = 16777500; a(3) = dsf(16777500) = 1^1+6^6+7^7+7^7+7^7+5^5+0^0+0^0 = 2520413; a(4) = dsf(2520413) = 2^2+5^5+2^2+0^0+4^4+1^1+3^3 = 3418.
This is an iterative process that starts with 3418.
		

Crossrefs

dsf is A045503.

Programs

  • Mathematica
    dsf[n_] := Block[{m = n, t}, t = IntegerDigits[m]; Sum[Max[1, t[[k]]]^t[[k]], {k, Length[t]}]]; NestList[dsf, 3418, 6]
    LinearRecurrence[{0, 0, 1},{3418, 16777500, 2520413},30] (* Ray Chandler, Aug 25 2015 *)

Extensions

Cross-reference from Charles R Greathouse IV, Nov 01 2009
Edited by Charles R Greathouse IV, Mar 18 2010
Extended by Ray Chandler, Aug 25 2015

A109372 Numbers k such that k * (sum of the digits of k raised to their own power) + 1 is prime.

Original entry on oeis.org

1, 11, 12, 20, 33, 34, 35, 36, 52, 64, 75, 79, 84, 94, 95, 102, 104, 110, 112, 121, 138, 163, 167, 170, 174, 184, 192, 200, 217, 231, 235, 246, 250, 255, 256, 321, 336, 343, 352, 354, 365, 390, 394, 414, 415, 420, 422, 438, 440, 446, 450, 455, 462, 471, 474
Offset: 1

Views

Author

Jason Earls, Aug 24 2005

Keywords

Comments

A zero digit raised to the zeroth power is treated as equaling one. - Harvey P. Dale, Feb 19 2013

Examples

			a(7)=35 because 35*(3^3 + 5^5) + 1 = 110321 is prime.
		

Crossrefs

Cf. A045503.

Programs

  • Mathematica
    ndnQ[n_]:=Module[{idn=IntegerDigits[n]/.{0->1}},PrimeQ[n*Total[idn^idn]+1]]; Select[Range[500],ndnQ] (* Harvey P. Dale, Feb 19 2013 *)
  • PARI
    isok(n) = my(d = digits(n)); isprime(n*sum(i=1,#d, d[i]^d[i])+1); \\ Michel Marcus, Sep 16 2018

A055207 Sum of n-th powers of digits of n.

Original entry on oeis.org

1, 1, 4, 27, 256, 3125, 46656, 823543, 16777216, 387420489, 1, 2, 4097, 1594324, 268435457, 30517578126, 2821109907457, 232630513987208, 18014398509481985, 1350851717672992090, 1048576, 2097153, 8388608, 94151567435, 281474993487872, 298023223910507557
Offset: 0

Views

Author

Henry Bottomley, Jun 19 2000

Keywords

Examples

			a(12) = 1^12 + 2^12 = 1 + 4096 = 4097.
		

Crossrefs

Programs

  • Maple
    a:= n-> add(i^n, i=convert(n, base, 10)):
    seq(a(n), n=0..29);  # Alois P. Heinz, Dec 18 2022
  • Mathematica
    Join[{1},Table[Total[IntegerDigits[n]^n],{n,25}]] (* Harvey P. Dale, Jul 16 2011 *)
Showing 1-10 of 16 results. Next