cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A045618 Partial sums of A000337(n+4), n >= 0.

Original entry on oeis.org

1, 6, 23, 72, 201, 522, 1291, 3084, 7181, 16398, 36879, 81936, 180241, 393234, 851987, 1835028, 3932181, 8388630, 17825815, 37748760, 79691801, 167772186, 352321563, 738197532, 1543503901, 3221225502, 6710886431, 13958643744
Offset: 0

Views

Author

Keywords

Comments

Convolution of A000225(n+1), n >= 0, (partial sums of powers of 2).
Sum of diameters of all nonempty subsets of {1, 2, ..., n+2}. - Charles R Greathouse IV, Nov 21 2011
a(n) is the sum of all the ways of adding the k-tuples of the terms found in A000079(0) to A000079(n). For a(2) the result is (1)+(2)+(4)=7; (1+2)+(2+4)=9; (1+2+4)=7 with 7+9+7=23. - J. M. Bergot, Jun 19 2017

Crossrefs

Cf. A000337.

Programs

  • Mathematica
    Table[Sum[(-1)^(n - k) k (-1)^(n - k) Binomial[n + 2, k + 2], {k, 0, n}], {n, 1, 28}] (* Zerinvary Lajos, Jul 08 2009 *)
    Rest[Accumulate[LinearRecurrence[{5,-8,4},{0,1,5},40]]] (* Harvey P. Dale, Dec 19 2011 *)
    CoefficientList[Series[1/((1 - x)^2 (1 - 2 x)^2), {x, 0, 30}], x] (* Vincenzo Librandi, Jul 22 2014 *)
    LinearRecurrence[{6, -13, 12, -4},{1, 6, 23, 72},28] (* Ray Chandler, Aug 03 2015 *)
  • PARI
    a(n)=(n-1)<<(n+2)+n+5 \\ Charles R Greathouse IV, Nov 21 2011

Formula

a(n) = n + 5 + (n-1)*2^(n+2).
G.f.: 1/((1-2*x)*(1-x))^2.
a(n) = Sum_{i=0...n+1} (2^(n+2-i) - 1)*(2^i - 1). - J. M. Bergot, Sep 16 2017
a(n) = Sum_{k=0..n+2} Sum_{i=0..n+2} (i-k) * C(n-k+2,i). - Wesley Ivan Hurt, Sep 19 2017
a(n) = 4*a(n-1) - 4*a(n-2) + n + 1, with a(-1) = a(-2) = 0. - Jesse Fiedler, Aug 20 2019
E.g.f.: exp(x)*(5 + x + exp(x)*(- 4 + 8*x)). - Stefano Spezia, Aug 20 2019
a(n) = Sum_{k=0..n} Stirling2(k+2,2) * Stirling2(n-k+2,2). - Seiichi Manyama, May 12 2025