A045883 a(n) = ((3*n+1)*2^n - (-1)^n)/9.
0, 1, 3, 9, 23, 57, 135, 313, 711, 1593, 3527, 7737, 16839, 36409, 78279, 167481, 356807, 757305, 1601991, 3378745, 7107015, 14913081, 31224263, 65244729, 136081863, 283348537, 589066695, 1222872633, 2535223751, 5249404473, 10856722887, 22429273657, 46290203079
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- John Rafael M. Antalan and Francis Joseph H. Campeña, Distance eigenvalues and forwarding indices of dimension-regular generalized recursive circulant graph of order power of two and three, arXiv:2009.11608[math.CO], 2020.
- M. Archibald, A. Blecher, A. Knopfmacher, and M. E. Mays, Inversions and Parity in Compositions of Integers, J. Int. Seq., Vol. 23 (2020), Article 20.4.1.
- Roland Bacher, Chebyshev polynomials, quadratic surds and a variation of Pascal's triangle, arXiv:1509.09054 [math.CO], 2015.
- Tomislav Došlić and Biserka Kolarec, On Log-Definite Tempered Combinatorial Sequences, Mathematics (2025) Vol. 13, Iss. 7, 1179.
- Silvia Heubach and Toufik Mansour, Counting rises, levels and drops in compositions, arXiv:math/0310197 [math.CO], 2003.
- F. K. Hwang, Three versions of a group testing game, SIAM J. Algebraic Discrete Methods 5 (1984), no. 2, 145--153. MR0745434(85d:90120). See p. 151, f(n) (but divide by 2). - _N. J. A. Sloane_, Apr 13 2014
- Peter J. Larcombe and Eric J. Fennessey, On a Scaled Balanced-Power Product Recurrence, Fibonacci Quart. 54 (2016), no. 3, 242-246. See Remark 2.2 p. 244.
- Peter J. Larcombe, Julius Fergy T. Rabago, and Eric J. Fennessey, On two derivative sequences from scaled geometric mean sequence terms, Palestine Journal of Mathematics (2018) Vol. 7(2), 397-405.
- Index entries for linear recurrences with constant coefficients, signature (3,0,-4).
Crossrefs
Programs
-
Magma
[((3*n+1)*2^n-(-1)^n)/9: n in [0..35]]; // Vincenzo Librandi, Jun 15 2017
-
Maple
A045883:=n->((3*n+1)*2^n-(-1)^n)/9; seq(A045883(n), n=0..30); # Wesley Ivan Hurt, Mar 21 2014
-
Mathematica
nn=31;a=x^2(1-x)/(1-x-2x^2)/(1-2x);b=x^2/(1-2x)^2;Drop[CoefficientList[Series[(b-a)/2,{x,0,nn}],x],2] (* Geoffrey Critzer, Mar 21 2014 *) CoefficientList[Series[x / ((1 + x) (1 - 2 x)^2), {x, 0, 33}], x] (* Vincenzo Librandi, Jun 15 2017 *) LinearRecurrence[{3, 0, -4}, {0, 1, 3}, 33] (* Jean-François Alcover, Sep 27 2017 *)
-
PARI
{a(n) = if( n<-1, 0, ((3*n + 1)*2^n - (-1)^n) / 9)};
Formula
G.f.: x/((1+x)*(1-2*x)^2).
a(n) = 3*a(n-1) - 4*a(n-3).
Starting with "1" = triangle A049260 * the odd integers as a vector. - Gary W. Adamson, Mar 06 2012
a(n) = A140960(n)/2. - J. M. Bergot, May 21 2013
From Wolfdieter Lang, Jun 14 2017: (Start)
a(n) = f(n)*2^n, where f(n) is a rational Fibonacci type sequence based on fuse(a,b) = (a+b+1)/2 with f(0) = 0, f(1) = 1/2 and f(n) = fuse(f(n-1), f(n-2)), for n >= 2. For fuse(a,b) see the Jeff Erickson link under A188545. Proof with f(n) = (3*n+1 - (-1)^n/2^n)/9, n >= 0, by induction.
a(n) = a(n-1) + 2*a(n-2) + 2^(n-1), n >= 0, with input a(-2) = 1/4 and a(-1) = 0. See also A127984. (End)
E.g.f.: (exp(2*x)*(1 + 6*x) - cosh(x) + sinh(x))/9. - Stefano Spezia, Apr 09 2025
a(n) = Sum_{k=0..n+2} k * A238343(n+2,k). - Alois P. Heinz, Apr 30 2025
Extensions
Simpler description from Vladeta Jovovic, Jul 18 2002
Comments