A045917 From Goldbach problem: number of decompositions of 2n into unordered sums of two primes.
0, 1, 1, 1, 2, 1, 2, 2, 2, 2, 3, 3, 3, 2, 3, 2, 4, 4, 2, 3, 4, 3, 4, 5, 4, 3, 5, 3, 4, 6, 3, 5, 6, 2, 5, 6, 5, 5, 7, 4, 5, 8, 5, 4, 9, 4, 5, 7, 3, 6, 8, 5, 6, 8, 6, 7, 10, 6, 6, 12, 4, 5, 10, 3, 7, 9, 6, 5, 8, 7, 8, 11, 6, 5, 12, 4, 8, 11, 5, 8, 10, 5, 6, 13, 9, 6, 11, 7, 7, 14, 6, 8, 13, 5, 8, 11, 7, 9
Offset: 1
References
- Calvin C. Clawson, "Mathematical Mysteries, the beauty and magic of numbers," Perseus Books, Cambridge, MA, 1996, Chapter 12, pages 236-257.
- H. Halberstam and H. E. Richert, 1974, "Sieve methods", Academic press, London, New York, San Francisco.
Links
- H. J. Smith, Table of n, a(n) for n = 1..20000
- M. Herkommer, Goldbach Conjecture Research.
- Eric Weisstein's World of Mathematics, Goldbach Partition.
- Wikipedia, Goldbach's conjecture.
- G. Xiao, WIMS server, Goldbach
- Index entries for sequences related to Goldbach conjecture
- J. Winkelmann, Goldbach's Prime Triangle — A Recreational Math Journey with an Introduction to Equidistant Primes.
Crossrefs
Programs
-
Haskell
a045917 n = sum $ map (a010051 . (2 * n -)) $ takeWhile (<= n) a000040_list -- Reinhard Zumkeller, Sep 02 2013
-
Magma
[#RestrictedPartitions(2*n,2,Set(PrimesInInterval(1,2*n))):n in [1..100]]; // Marius A. Burtea, Jan 23 2020
-
Maple
A045917 := proc(n) local a,i ; a := 0 ; for i from 1 to n do if isprime(i) and isprime(2*n-i) then a := a+1 ; end if; end do: a ; end proc: # R. J. Mathar, Jul 01 2013 # second Maple program: G := proc (n) local g, j: g := {}: for j from 2 to (1/2)*n do if isprime(j) and isprime(n-j) then g := `union`(g, {{n-j, j}}) end if end do: g end proc: seq(nops(G(2*n)), n = 1 .. 98); # Emeric Deutsch, Jan 03 2017
-
Mathematica
f[n_] := Length[Select[2n - Prime[Range[PrimePi[n]]], PrimeQ]]; Table[ f[n], {n, 100}] (* Paul Abbott, Jan 11 2005 *) nn = 10^2; ps = Boole[PrimeQ[Range[1,2*nn,2]]]; Join[{0,1}, Table[Sum[ps[[i]] ps[[n-i+1]], {i, Ceiling[n/2]}], {n, 3, nn}]] (* T. D. Noe, Apr 13 2011 *)
-
PARI
a(n)=my(s);forprime(p=2,n,s+=isprime(2*n-p));s \\ Charles R Greathouse IV, Mar 27 2012
-
Python
from sympy import isprime def A045917(n): x = 0 for i in range(2,n+1): if isprime(i) and isprime(2*n-i): x += 1 return x # Chai Wah Wu, Feb 24 2015
Formula
From Halberstam and Richert: a(n) < (8+0(1))*c(n)*n/log(n)^2 where c(n) = Product_{p>2} (1 - 1/(p-1)^2)*Product_{p|n, p>2} (p-1)/(p-2). It is conjectured that the factor 8 can be replaced by 2. - Benoit Cloitre, May 16 2002
a(n) = Sum_{i=2..n} floor(2/Omega(i*(2*n-i))). - Wesley Ivan Hurt, Jan 24 2013
a(n) = A224709(n) + (primepi(2n-2) - primepi(n-1)) + primepi(n) + 1 - n. - Anthony Browne, May 03 2016
Comments