cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A045925 a(n) = n*Fibonacci(n).

Original entry on oeis.org

0, 1, 2, 6, 12, 25, 48, 91, 168, 306, 550, 979, 1728, 3029, 5278, 9150, 15792, 27149, 46512, 79439, 135300, 229866, 389642, 659111, 1112832, 1875625, 3156218, 5303286, 8898708, 14912641, 24961200, 41734339, 69705888, 116311074, 193898158, 322961275, 537492672
Offset: 0

Views

Author

Keywords

Comments

Number of levels in all compositions of n+1 with only 1's and 2's.
Apart from first term: row sums of the triangle in A131410. - Reinhard Zumkeller, Oct 07 2012
Number of permutations of length n>0 avoiding the partially ordered pattern (POP) {1>3} of length 4. That is, number of length n permutations having no subsequences of length 4 in which the first element is larger than the third one. - Sergey Kitaev, Dec 08 2020

References

  • Jean Paul Van Bendegem, The Heterogeneity of Mathematical Research, a chapter in Perspectives on Interrogative Models of Inquiry, Volume 8 of the series Logic, Argumentation & Reasoning pp 73-94, Springer 2015. See Section 2.1.

Crossrefs

Partial sums: A014286. Cf. A000045.

Programs

  • Haskell
    a045925 n = a045925_list !! (n-1)
    a045925_list = zipWith (*) [0..] a000045_list
    -- Reinhard Zumkeller, Oct 01 2012
  • Magma
    [n*Fibonacci(n): n in [0..60]]; // Vincenzo Librandi, Apr 23 2011
    
  • Maple
    a:= n-> n*(<<0|1>, <1|1>>^n)[1,2]:
    seq(a(n), n=0..37);  # Alois P. Heinz, May 07 2021
  • Mathematica
    Table[Fibonacci[n]*n, {n, 0, 33}] (* Zerinvary Lajos, Jul 09 2009 *)
    LinearRecurrence[{2, 1, -2, -1}, {0, 1, 2, 6}, 34] (* or *)
    CoefficientList[ Series[(x + x^3)/(-1 + x + x^2)^2, {x, 0, 35}], x] (* Robert G. Wilson v, Nov 14 2015 *)
  • PARI
    Lucas(n)=fibonacci(n-1)+fibonacci(n+1)
    a(n)=polcoeff(sum(m=1,n,eulerphi(m)*fibonacci(m)*x^m/(1-Lucas(m)*x^m+(-1)^m*x^(2*m)+x*O(x^n))),n) \\ Paul D. Hanna, Jan 12 2012
    
  • PARI
    a(n)=n*fibonacci(n) \\ Charles R Greathouse IV, Jan 12 2012
    
  • PARI
    concat(0, Vec(x*(1+x^2)/(1-x-x^2)^2 + O(x^100))) \\ Altug Alkan, Oct 28 2015
    

Formula

G.f.: x*(1+x^2)/(1-x-x^2)^2.
G.f.: Sum_{n>=1} phi(n)*Fibonacci(n)*x^n/(1 - Lucas(n)*x^n + (-1)^n*x^(2*n)) = Sum_{n>=1} n*Fibonacci(n)*x^n, where phi(n) = A000010(n) and Lucas(n) = A000204(n). - Paul D. Hanna, Jan 12 2012
a(n) = a(n-1) + a(n-2) + L(n-1). - Gary Detlefs, Dec 29 2012
a(n) = F(n+1) + Sum_{k=1..n-2} F(k)*L(n-k), F = A000045 and L = A000032. - Gary Detlefs, Dec 29 2012
a(n) = F(2*n)/Sum_{k=0..floor(n/2)} binomial(n-k,k)/(n-k). - Gary Detlefs, Jan 19 2013
a(n) = A014965(n) * A104714(n). - Michel Marcus, Oct 24 2013
a(n) = 3*A001629(n+1) - A001629(n+2) + A000045(n-1). - Ralf Stephan, Apr 26 2014
a(n) = 2*n*(F(n-2) + floor(F(n-3)/2)) + (n^3 mod 3*n), F = A000045. - Gary Detlefs, Jun 06 2014
E.g.f.: x*(exp(-x/phi)/phi + exp(x*phi)*phi)/sqrt(5), where phi = (1+sqrt(5))/2. - Vladimir Reshetnikov, Oct 28 2015
This is a divisibility sequence and is generated by x^4 - 2*x^3 - x^2 + 2*x + 1. - R. K. Guy, Nov 13 2015
a(n) = L'(n, 1), the first derivative of the n-th Lucas polynomial evaluated at 1. - Andrés Ventas, Nov 12 2021
Sum_{n>=0} a(n)/2^n = 10 (Euler, 1990). - Amiram Eldar, Jan 22 2022

Extensions

Incorrect formula removed by Gary Detlefs, Oct 27 2011