cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A067813 Start of a record-breaking run of consecutive integers with a number of prime factors (counted with multiplicity) equal to 3.

Original entry on oeis.org

8, 27, 170, 602, 2522, 211673
Offset: 1

Views

Author

Shyam Sunder Gupta, Feb 07 2002

Keywords

Comments

602 is the first number having 4 and 5 consecutive integers with 3 prime factors. - T. D. Noe, Mar 19 2014

Examples

			a(4)=602 because 602 is the start of a record breaking run of 5 consecutive integers (602 to 606) each having 3 prime factors; i.e. bigomega(n)=A001222(n)=3 for n = 602, ..., 606.
		

Crossrefs

Programs

  • Mathematica
    bigomega[n_] := Plus@@Last/@FactorInteger[n]; For[n=1; m=l=0, True, n++, If[bigomega[n]==3, l++, If[l>m, m=l; Print[n-l, " ", l]]; l=0]]
    Module[{nn=8,po},po=PrimeOmega[Range[5000000]];Flatten[Table[ SequencePosition[ po,PadRight[{},n,3],1],{n,nn}],1]][[All,1]]//Union (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jun 14 2019 *)
  • PARI
    show(lim)=my(was,r,ct); forfactored(n=2, lim\1+1, is=vecsum(n[2][, 2])==3; if(is, ct++; if(ct>r, r=ct; print(r" "n[1]-r+1)),ct=0)) \\ Charles R Greathouse IV, Jun 26 2019

Extensions

Edited by Dean Hickerson, Jul 31 2002

A077657 Least number with exactly n consecutive successors, all having the same number of prime factors (counted with multiplicity).

Original entry on oeis.org

1, 2, 33, 603, 602, 2522, 211673, 3405123, 3405122, 49799889, 202536181, 3195380868, 5208143601, 85843948321, 97524222465
Offset: 0

Views

Author

Reinhard Zumkeller, Nov 13 2002

Keywords

Comments

A001222(a(n))=A001222(a(n)+k) for k<=n;
A077655(a(n))=n and A077655(k)

Examples

			a(0)=A077656(1)=1; a(1)=A045920(1)=2; a(2)=A045939(1)=33; a(3)=A045940(2)=603; a(4)=A045941(1)=602; a(5)=A045942(1)=2522.
		

Crossrefs

Cf. A045984.

Formula

a(n)=A045984(n+1)+A077655(A045984(n+1))-n - Martin Fuller, Nov 21 2006

Extensions

More terms from Martin Fuller, Nov 21 2006

A324593 a(n) is the smallest number k such that n consecutive integers starting at k have the same number of odd divisors (A001227).

Original entry on oeis.org

1, 1, 5, 10, 10, 515, 2314, 2314, 1536863, 4053992, 4053992, 18584686, 146237365, 163039279, 4775943486, 13147233734, 86153130379
Offset: 1

Author

Ilya Gutkovskiy, Sep 03 2019

Keywords

Examples

			515 has 4 odd divisors {1, 5, 103, 515}, 516 has 4 odd divisors {1, 3, 43, 129}, 517 has 4 odd divisors {1, 11, 47, 517}, 518 has 4 odd divisors {1, 7, 37, 259}, 519 has 4 odd divisors {1, 3, 173, 519} and 520 has 4 odd divisors {1, 5, 13, 65}. These the first 6 consecutive numbers with the same number of odd divisors, so a(6) = 515.
		

Programs

  • C
    See Links section.

Extensions

a(11)-a(14) from Rémy Sigrist, Sep 04 2019
a(15)-a(17) from Giovanni Resta, Sep 04 2019

A324594 a(n) is the smallest number k such that n consecutive integers starting at k have the same number of nonprime divisors (A033273).

Original entry on oeis.org

1, 1, 1, 19940, 204323, 294590, 310042685, 2587701932494, 2587701932494
Offset: 1

Author

Ilya Gutkovskiy, Sep 03 2019

Keywords

Examples

			19940 has 9 nonprime divisors {1, 4, 10, 20, 1994, 3988, 4985, 9970, 19940}, 19941 has 9 nonprime divisors {1, 51, 69, 289, 391, 867, 1173, 6647, 19941}, 19942 has 9 nonprime divisors {1, 26, 118, 169, 338, 767, 1534, 9971, 19942} and 19943 has 9 nonprime divisors {1, 49, 77, 259, 407, 539, 1813, 2849, 19943}. These the first 4 consecutive numbers with the same number of nonprime divisors, so a(4) = 19940.
		

Programs

  • C
    See Links section.

Extensions

a(7) from Rémy Sigrist, Sep 04 2019
a(8)-a(9) from Giovanni Resta, Sep 04 2019

A323253 a(n) is the smallest number k such that factorizations of n consecutive integers starting at k have the same excess of number of primes counted with multiplicity over number of primes counted without multiplicity (A046660).

Original entry on oeis.org

1, 1, 1, 844, 74849, 671346, 8870025
Offset: 1

Author

Ilya Gutkovskiy, Aug 30 2019

Keywords

Comments

Smallest number k such that n or more consecutive integers starting at k have the same number of proper prime power divisors.
a(8) > 10^9. - Vaclav Kotesovec, Sep 01 2019
a(8) <= 254023231417746. - David A. Corneth, Sep 01 2019
a(8) > 10^13. - Giovanni Resta, Sep 05 2019

Examples

			671346 = 2 * 3^2 * 13 * 19 * 151,
671347 = 17^2 * 23 * 101,
671348 = 2^2 * 47 * 3571,
671349 = 3 * 7^2 * 4567,
671350 = 2 * 5^2 * 29 * 463,
671351 = 53^2 * 239.
These the first 6 consecutive numbers with the same number of proper prime power divisors, so a(6) = 671346.
		

Programs

  • Mathematica
    Do[find = 0; k = 0; While[find == 0, k++; If[Length[Union[Table[PrimeOmega[j] - PrimeNu[j], {j, k, k + n - 1}]]] == 1, find = 1; Print[k]]], {n, 1, 5}] (* Vaclav Kotesovec, Sep 01 2019 *)
    (* faster program *) fak = Table[f = FactorInteger[j]; Total[Transpose[f][[2]]] - Length[f], {j, 1, 10000000}]; m = Max[fak]; Table[Min[Table[SequencePosition[fak, ConstantArray[j, n]], {j, 0, m}]], {n, 1, 7}] (* Vaclav Kotesovec, Sep 01 2019 *)
  • PARI
    excess(n) = bigomega(n) - omega(n);
    score(n) = my(t=excess(n)); for(k=1, oo, if(excess(n+k) != t, return(k)));
    upto(nn) = my(n=1); for(k=1, nn, while(score(k) >= n, print1(k, ", "); n++)); \\ Daniel Suteu, Sep 01 2019

Extensions

a(7) from Daniel Suteu and Vaclav Kotesovec, Sep 01 2019

A338628 a(n) is the smallest number k such that n consecutive integers starting at k have the same number of square divisors (A046951).

Original entry on oeis.org

1, 1, 1, 844, 3624, 22020, 671346, 8870024, 264459172, 463239475, 1407472722, 108494875170, 12385053656370, 145065154350545
Offset: 1

Author

Ilya Gutkovskiy, Nov 04 2020

Keywords

Examples

			844 has 2 square divisors {1, 4}, 845 has 2 square divisors {1, 169}, 846 has 2 square divisors {1, 9} and 847 has 2 square divisors {1, 121}. These are the first 4 consecutive numbers with the same number of square divisors, so a(4) = 844.
		

Programs

  • Mathematica
    Do[find = 0; k = 0; While[find == 0, k++; If[Length[Union[Table[Length[Select[Divisors[j], IntegerQ[Sqrt[#]] &]], {j, k, k + n - 1}]]] == 1, find = 1; Print[k]]], {n, 1, 7}]
  • PARI
    isok(n, k) = #Set(apply(x->sumdiv(x, d, issquare(d)), vector(n, i, k+i-1))) == 1;
    a(n) = my(k=1); while(! isok(n, k), k++); k; \\ Michel Marcus, Nov 05 2020

Extensions

a(8)-a(11) from Amiram Eldar, Nov 04 2020
a(12)-a(14) from Martin Ehrenstein, Jul 19 2023

A358044 a(n) is the smallest number k such that n consecutive integers starting at k have the same number of triangular divisors (A007862).

Original entry on oeis.org

1, 1, 55, 5402, 2515069
Offset: 1

Author

Ilya Gutkovskiy, Oct 26 2022

Keywords

Comments

Any subsequent terms are > 10^10. - Lucas A. Brown, Jan 06 2023

Examples

			55 has 2 triangular divisors {1, 55}, 56 has 2 triangular divisors {1, 28} and 57 has 2 triangular divisors {1, 3}. These are the first 3 consecutive numbers with the same number of triangular divisors, so a(3) = 55.
		
Showing 1-7 of 7 results.