A046161 a(n) = denominator of binomial(2n,n)/4^n.
1, 2, 8, 16, 128, 256, 1024, 2048, 32768, 65536, 262144, 524288, 4194304, 8388608, 33554432, 67108864, 2147483648, 4294967296, 17179869184, 34359738368, 274877906944, 549755813888, 2199023255552, 4398046511104, 70368744177664, 140737488355328, 562949953421312
Offset: 0
Examples
sqrt(1+x) = 1 + (1/2)*x - (1/8)*x^2 + (1/16)*x^3 - (5/128)*x^4 + (7/256)*x^5 - (21/1024)*x^6 + (33/2048)*x^7 + ... binomial(2n,n)/4^n => 1, 1/2, 3/8, 5/16, 35/128, 63/256, 231/1024, 429/2048, 6435/32768, ... The sequence e(0,n) begins 1, 3/2, 21/8, 77/16, 1155/128, 4389/256, 33649/1024, 129789/2048, 4023459/32768, ...
References
- W. Feller, An Introduction to Probability Theory and Its Applications, Vol. 1, 2nd ed. New York: Wiley, 1968; Chap. III, Eq. 4.1.
- B. D. Hughes, Random Walks and Random Environments, Oxford 1995, vol. 1, p. 513, Eq. (7.282).
- Eli Maor, e: The Story of a Number. Princeton, New Jersey: Princeton University Press (1994), p. 72.
- Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 6, equations 6:14:5 - 6:14:9 at pages 50-51.
Links
- T. D. Noe, Table of n, a(n) for n = 0..200
- C. M. Bender and K. A. Milton, Continued fraction as a discrete nonlinear transform, arXiv:hep-th/9304062, 1993. See V_n with N=1.
- Isabel Cação, Helmuth R. Malonek, Maria Irene Falcão, and Graça Tomaz, Combinatorial Identities Associated with a Multidimensional Polynomial Sequence, J. Int. Seq., Vol. 21 (2018), Article 18.7.4.
- Jeremy and Patricia King, Problem 89.G, Problem Corner, The Mathematical Gazette, Vol. 90, No. 515 (2005), p. 314; Solution, ibid., Vol. 90, No. 517 (2006), pp. 163-164.
- V. H. Moll, The evaluation of integrals: a personal story, Notices Amer. Math. Soc., 49 (No. 3, March 2002), 311-317.
- Eric Weisstein's World of Mathematics, Binomial Series.
- Eric Weisstein's World of Mathematics, Heads-Minus-Tails Distribution.
- Eric Weisstein's World of Mathematics, Legendre Polynomial.
- Eric Weisstein's World of Mathematics, Random Matrix.
- Eric Weisstein's World of Mathematics, Random Walk 1-Dimensional.
- Index to divisibility sequences.
Crossrefs
Programs
-
Magma
[Denominator(Binomial(2*n,n)/4^n): n in [0..30]]; // Vincenzo Librandi, Jul 18 2015
-
Maple
e := proc(l,m) local k; add(2^(k-2*m)*binomial(2*m-2*k,m-k)* binomial(m+k, m) *binomial(k,l), k=l..m); end: seq(denom(e(0,n)), n = 0..24); Z[0]:=0: for k to 30 do Z[k]:=simplify(1/(2-z*Z[k-1])) od: g:=sum((Z[j]-Z[j-1]), j=1..30): gser:=series(g, z=0, 27): seq(denom(coeff(gser, z, n)), n=-1..23); # Zerinvary Lajos, May 21 2008 A046161 := proc(n) option remember: if n = 0 then 1 else 2^A001511(n) * procname(n-1) fi: end: A001511 := proc(n): padic[ordp](2*n, 2) end: seq(A046161(n), n = 0..24); # Johannes W. Meijer, Nov 04 2012 A046161 := n -> 4^n/2^add(i,i=convert(n, base, 2)): seq(A046161(n), n=0..24); # Peter Luschny, Apr 08 2014
-
Mathematica
a[n_, m_] := Binomial[n - m/2 + 1, n - m + 1] - Binomial[n - m/2, n - m + 1]; s[n_] := Sum[ a[n, k], {k, 0, n}]; Table [Denominator[s[n]], {n, 0, 26}] (* Michele Dondi (bik.mido(AT)tiscalinet.it), Jul 11 2002 *) Denominator[Table[Binomial[2n,n]/4^n,{n,0,30}]] (* Harvey P. Dale, Oct 29 2012 *) Table[Denominator@LegendreP[2n,0],{n,0,24}] (* Andres Cicuttin, Jan 22 2018 *)
-
Maxima
a(n) := denom(binomial(-1/2,n)); makelist(a(n),n,0,24); /* Peter Luschny, Nov 21 2012 */
-
PARI
a(n)=if(n<0,0,denominator(binomial(2*n,n)/4^n)) /* Michael Somos, Sep 15 2004 */
-
PARI
a(n)=my(s=n);while(n>>=1,s+=n);2^s \\ Charles R Greathouse IV, Apr 07 2012
-
PARI
a(n)=denominator(I^-n*pollegendre(n,I/2)) \\ Charles R Greathouse IV, Mar 18 2017
-
Python
def A046161(n): return 1<<(n<<1)-n.bit_count() # Chai Wah Wu, Nov 15 2022
-
Sage
def A046161(n): A005187 = lambda n: A005187(n//2) + n if n > 0 else 0 return 2^A005187(n) [A046161(n) for n in (0..24)] # Peter Luschny, Nov 16 2012
Formula
a(n) = 2^(2*n - 1 - A048881(n-1)), if n > 0.
a(n) = 2^A005187(n).
a(n) = 4^n/2^A000120(n). - Michael Somos, Sep 15 2004
a(n) = 2^A001511(n)*a(n-1) with a(0) = 1. - Johannes W. Meijer, Nov 04 2012
a(n) = denominator(binomial(-1/2,n)). - Peter Luschny, Nov 21 2012
a(n) = 2^n*A060818(n). - Johannes W. Meijer, Jan 05 2017
a(n)/A001790(n) ~ sqrt(Pi*n) (King and King, 2005). - Amiram Eldar, Jul 02 2023
Comments