cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A046224 Distinct numbers seen when writing first numerator and then denominator of central elements of 1/2-Pascal triangle.

Original entry on oeis.org

1, 2, 3, 11, 40, 147, 546, 2046, 7722, 29315, 111826, 428298, 1646008, 6344366, 24515700, 94942620, 368404110, 1431985635, 5574725970, 21732560850, 84828633120, 331488081210, 1296712152060, 5077282282020, 19897457591700, 78039200913102, 306302623291476
Offset: 1

Views

Author

Keywords

Examples

			1/1; <-- hence 1;
1/1 1/1;
1/1 1/2 1/1; <-- hence 2
1/1 3/2 3/2 1/1;
1/1 5/2 3/1 5/2 1/1; <-- hence 3
1/1 7/2 11/2 11/2 7/2 1/1;
1/1 9/2 9/1 11/1 9/1 9/2 1/1; <-- hence 11
1/1 11/2 27/2 20/1 20/1 27/2 11/2 1/1;
...
		

Crossrefs

Cf. A046213.

Programs

  • Magma
    [1,2] cat [(5*n-9)/(8*n-12)*Binomial(2*n-2,n-1): n in [3..40]]; // Vincenzo Librandi, Sep 24 2015
    
  • Mathematica
    Join[{1, 2}, Table[(5 n - 9)/(8 n - 12) Binomial[2 n - 2, n - 1], {n, 3, 40}]] (* Vincenzo Librandi, Sep 24 2015 *)
  • PARI
    a(n) = if (n<3, n, (5*n-9)/(8*n-12)*binomial(2*n-2,n-1));
    vector(40, n, a(n)) \\ Altug Alkan, Oct 01 2015

Formula

a(n) = Sum_{k=1..n-2} (2*k+1)*binomial(2*n-k-5,n-3), n>2; a(1)=1, a(2)=2. - Vladimir Kruchinin, Sep 27 2011
a(n) = (5*n-9)/(8*n-12)*binomial(2*n-2,n-1), n>2; a(1)=1, a(2)=2. - Eric Werley, Sep 16 2015
G.f.: (3/2)*x^2 + (2*x - 3*x^2)/(2*sqrt(1-4*x)). - G. C. Greubel, Sep 24 2015

Extensions

More terms from James Sellers, Dec 13 1999
a(26)-a(27) from Vincenzo Librandi, Sep 24 2015