cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A327434 Prime(n)^2 - prime(n-1)*prime(n+1) for n in A046868.

Original entry on oeis.org

4, 30, 42, 128, 98, 90, 36, 248, 158, 150, 182, 420, 210, 222, 1326, 560, 1212, 36, 350, 36, 728, 1548, 402, 144, 1832, 462, 968, 1064, 36, 36, 1088, 578, 570, 3126, 630, 2732, 2796, 782, 36, 782, 1620, 3372, 3468, 902, 1860, 930, 2012, 1980, 2028, 5234, 6600
Offset: 1

Views

Author

Chai Wah Wu, Sep 10 2019

Keywords

Comments

Positive terms in A056221.

Crossrefs

A046869 Good primes (version 1): prime(n)^2 > prime(n-1)*prime(n+1).

Original entry on oeis.org

5, 11, 17, 29, 37, 41, 53, 59, 67, 71, 79, 97, 101, 107, 127, 137, 149, 157, 163, 173, 179, 191, 197, 211, 223, 227, 239, 251, 257, 263, 269, 277, 281, 307, 311, 331, 347, 367, 373, 379, 397, 419, 431, 439, 457, 461, 479, 487, 499, 521, 541
Offset: 1

Views

Author

Keywords

Comments

Also called geometrically strong primes. - Amarnath Murthy, Mar 08 2002
The idea can be extended by defining a geometrically strong prime of order k to be a prime that is greater than the geometric mean of r neighbors on both sides for all r = 1 to k but not for r = k+1. Similar generalizations can be applied to the sequence A051634. - Amarnath Murthy, Mar 08 2002
It appears that a(n) ~ 2*prime(n). - Thomas Ordowski, Jul 25 2012
Conjecture: primes p(n) such that 2*p(n) >= p(n-1) + p(n+1). - Thomas Ordowski, Jul 25 2012
Probably {3,7,23} U {good primes} = {primes p(n) > 2/(1/p(n-1) + 1/p(n+1))}. - Thomas Ordowski, Jul 27 2012
Except for A001359(1), A001359 is a subsequence. - Chai Wah Wu, Sep 10 2019

Examples

			37 is a member as 37^2 = 1369 > 31*41 = 1271.
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, Section A14.

Crossrefs

Programs

  • Magma
    [NthPrime(n): n in [2..100] | NthPrime(n)^2 gt NthPrime(n-1)*NthPrime(n+1)]; // Bruno Berselli, Oct 23 2012
  • Maple
    with(numtheory): a := [ ]: P := [ ]: M := 300: for i from 2 to M do if p(i)^2>p(i-1)*p(i+1) then a := [ op(a),i ]; P := [ op(P),p(i) ]; fi; od: a; P;
  • Mathematica
    Do[ If[ Prime[n]^2 > Prime[n - 1]*Prime[n + 1], Print[ Prime[n] ] ], {n, 2, 100} ]
    Transpose[Select[Partition[Prime[Range[300]],3,1],#[[2]]^2>#[[1]]#[[3]]&]][[2]] (* Harvey P. Dale, May 13 2012 *)
    Select[Prime[Range[2, 100]], #^2 > NextPrime[#]*NextPrime[#, -1] &] (* Jayanta Basu, Jun 29 2013 *)
  • PARI
    forprime(n=o=p=3,999,o+0<(o=p)^2/(p=n) & print1(o", "))
    isA046869(p)={ isprime(p) & p^2>precprime(p-1)*nextprime(p+1) } \\ M. F. Hasler, Jun 15 2011
    

Extensions

Corrected and extended by Robert G. Wilson v, Dec 06 2000
Edited by N. J. A. Sloane at the suggestion of Giovanni Resta, Aug 20 2007

A056221 Image of primes (A000040) under "little Hankel" transform that sends [c_0, c_1, ...] to [d_0, d_1, ...] where d_n = c_n^2 - c_{n+1}*c_{n-1}.

Original entry on oeis.org

-1, 4, -6, 30, -18, 42, -30, -22, 128, -112, 98, 90, -78, -70, 36, 248, -232, 158, 150, -280, 182, -142, -130, 420, 210, -198, 222, -210, -1074, 1326, -238, 560, -1092, 1212, -592, 36, 350, -310, 36, 728, -1428, 1548, -378, 402, -1966, 144, 1832, 462, -450, -442
Offset: 1

Views

Author

N. J. A. Sloane, Aug 06 2000

Keywords

Comments

a(n) > 0 if and only if n+1 is in A046868. a(n) < 0 if and only if n+1 is in A233671. - Chai Wah Wu, Sep 10 2019

Crossrefs

Programs

  • Maple
    A056221 := proc(n)
            ithprime(n+1)^2-ithprime(n)*ithprime(n+2) ;
    end proc:
    seq(A056221(n),n=1..10) ; # R. J. Mathar, Dec 10 2011
  • Mathematica
    a[n_]:=Prime[n+1]^2-Prime[n]Prime[n+2]; Array[a,50] (* Stefano Spezia, Jul 15 2024 *)

Formula

a(n) = determinant of matrix
| prime(n+1) prime(n)|
| prime(n+2) prime(n+1)|. - Zak Seidov, Jul 23 2008, indices corrected by Gary Detlefs, Dec 09 2011
a(n) = 2*A342567(n+1) for n >= 2. - Hugo Pfoertner, Jun 20 2021

A233671 Numbers k such that prime(k)^2 < prime(k-1)*prime(k+1).

Original entry on oeis.org

2, 4, 6, 8, 9, 11, 14, 15, 18, 21, 23, 24, 27, 29, 30, 32, 34, 36, 39, 42, 44, 46, 50, 51, 53, 58, 61, 62, 65, 66, 68, 70, 71, 72, 76, 77, 79, 80, 82, 84, 86, 87, 90, 91, 94, 96, 97, 99, 101, 105, 106, 110, 114, 117, 118, 121, 123, 124, 125, 127, 132, 135
Offset: 1

Views

Author

Clark Kimberling, Dec 14 2013

Keywords

Comments

If 1 is appended to A046868, the resulting sequence is the complement of A233671. Does A233671 have asymptotic density 1/2? Does every positive integer occur infinitely many times in the difference sequence of A233671?

Examples

			a(1) = 2 because 3^2 < 2*5.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[2, 200], Prime[#]^2 < Prime[# - 1]*Prime[# + 1] &]
    PrimePi[#]&/@Select[Partition[Prime[Range[200]],3,1],#[[2]]^2<(#[[1]] #[[3]])&][[All,2]] (* Harvey P. Dale, Dec 09 2021 *)
Showing 1-4 of 4 results.