cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A047221 Numbers that are congruent to {2, 3} mod 5.

Original entry on oeis.org

2, 3, 7, 8, 12, 13, 17, 18, 22, 23, 27, 28, 32, 33, 37, 38, 42, 43, 47, 48, 52, 53, 57, 58, 62, 63, 67, 68, 72, 73, 77, 78, 82, 83, 87, 88, 92, 93, 97, 98, 102, 103, 107, 108, 112, 113, 117, 118, 122, 123, 127, 128, 132, 133, 137, 138, 142, 143, 147, 148, 152, 153
Offset: 1

Views

Author

Keywords

Comments

Theorem: if 5^((n-1)/2) = -1 (mod n) then n == 2 or 3 (mod 5) (see Crandall and Pomerance).
Start with 2. The next number, 3, cannot be written as the sum of two of the previous terms. So 3 is in. 4=2+2, 5=2+3, 6=3+3, so these are not in. But you cannot obtain 7, so the next term is 7. And so on. - Fabian Rothelius, Mar 13 2001
Also numbers k such that k^2 == -1 (mod 5). - Vincenzo Librandi, Aug 05 2010
For any (t,s) < n, a(t)*a(s) != a(n) and a(t) - a(s) != a(n). - Anders Hellström, Jul 01 2015
These numbers appear in the product of a Rogers-Ramanujan identity. See A003106 also for references. - Wolfdieter Lang, Oct 29 2016

References

  • Richard Crandall and Carl Pomerance, Prime Numbers: A Computational Perspective, Springer, NY, 2001; see Exercise 3.24, p. 154.

Crossrefs

Cf. A118015 (floor(n^2/5)).
Cf. A003631 (primes), A094214.
Partitions into: A003106, A219607.

Programs

  • Haskell
    a047221 n = 5 * ((n - 1) `div` 2) + 3 - n `mod` 2
    a047221_list = 2 : 3 : map (+ 5) a047221_list
    -- Reinhard Zumkeller, Nov 27 2012
    
  • Magma
    [ n : n in [1..165] | n mod 5 eq 2 or n mod 5 eq 3 ];
    
  • Mathematica
    {2,3}+#&/@(5 Range[0,30])//Flatten (* Harvey P. Dale, Jan 22 2023 *)
  • PARI
    Vec(x*(2+x+2*x^2)/((1+x)*(1-x)^2) + O(x^80)) \\ Michel Marcus, Jun 30 2015

Formula

a(n) = 5*(n-1) - a(n-1) (with a(1)=2). - Vincenzo Librandi, Aug 05 2010
a(n) = (10*n - 3*(-1)^n - 5)/4.
G.f.: x*(2+x+2*x^2)/((1+x)*(1-x)^2).
a(n)^2 = 5*A118015(a(n)) + 4.
a(n) = 5 * (floor(n-1)/2) + 3 - n mod 2. - Reinhard Zumkeller, Nov 27 2012
Sum_{n>=1} (-1)^(n+1)/a(n) = sqrt(1-2/sqrt(5))*Pi/5. - Amiram Eldar, Dec 07 2021
E.g.f.: 2 + ((5*x - 5/2)*exp(x) - (3/2)*exp(-x))/2. - David Lovler, Aug 23 2022
From Amiram Eldar, Nov 22 2024: (Start)
Product_{n>=1} (1 - (-1)^n/a(n)) = 1.
Product_{n>=1} (1 + (-1)^n/a(n)) = 1/phi (A094214). (End)

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Apr 08 2002
Closed formula, g.f. and link added by Bruno Berselli, Nov 28 2010