A047470 Numbers that are congruent to {0, 3} mod 8.
0, 3, 8, 11, 16, 19, 24, 27, 32, 35, 40, 43, 48, 51, 56, 59, 64, 67, 72, 75, 80, 83, 88, 91, 96, 99, 104, 107, 112, 115, 120, 123, 128, 131, 136, 139, 144, 147, 152, 155, 160, 163, 168, 171, 176, 179, 184, 187, 192, 195, 200, 203, 208, 211, 216, 219, 224, 227, 232
Offset: 1
Examples
From _Franck Maminirina Ramaharo_, Jul 22 2018: (Start) Consider the following equivalent figure-eight knot diagrams: +---------------------+ +-----------------n | | | | | +---------B-----+ | w-----A---e | | | | | | | | | n-----C---+ | | | | | | | | | | | | <=> | +-------B-----s | | | +---D-----+ | | | | | | | | | | | | | w-----A---------e | +---C-------D---------+ | | | | s---------------------+ +-------+ Uppercases A,B,C,D denote crossings, and lowercases n,s,w,e denote directions. Due to symmetry and ambient isotopy, all possible sequences are obtained by starting from crossing A and choose either direction 'n' or 's'. Direction 'n': A: 0, 3, 8, 11, 16, 19, 24, 27, 32, 35, 40, ... (this sequence); B: 4, 7, 12, 15, 20, 23, 28, 31, 36, 39, 44, ... A047535; C: 1, 6, 9, 14, 17, 22, 25, 30, 33, 38, 41, ... A047452; D: 2, 5, 10, 13, 18, 21, 26, 29, 34, 37, 42, ... A047617. Direction 's': A: 0, 5, 8, 13, 16, 21, 24, 29, 32, 37, 40, ... A047615; B: 1, 4, 9, 12, 17, 20, 25, 28, 33, 36, 41, ... A047461; C: 2, 7, 10, 15, 18, 23, 26, 31, 34, 39, 42, ... A047524; D: 3, 6, 11, 14, 19, 22, 27, 30, 35, 38, 43, ... A047398. (End)
Links
- Muniru A Asiru, Table of n, a(n) for n = 1..5000
- Eric Weisstein's World of Mathematics, Maximum Vertex Degree.
- Eric Weisstein's World of Mathematics, Queen Graph.
- Index entries for linear recurrences with constant coefficients, signature (1,1,-1).
Programs
-
GAP
a:=[0,3,8];; for n in [4..50] do a[n]:=a[n-1]+a[n-2]-a[n-3]; od; a; # Muniru A Asiru, Jul 23 2018
-
Maple
a:=n->add(4+(-1)^j,j=1..n):seq(a(n),n=0..64); # Zerinvary Lajos, Dec 13 2008
-
Mathematica
With[{c = 8 Range[0, 30]}, Sort[Join[c, c + 3]]] (* Harvey P. Dale, Oct 11 2011 *) Table[(8 n - 9 - (-1)^n)/2, {n, 20}] (* Eric W. Weisstein, Jun 20 2017 *) LinearRecurrence[{1, 1, -1}, {0, 3, 8}, 20] (* Eric W. Weisstein, Jun 20 2017 *) CoefficientList[Series[(x (3 + 5 x))/((-1 + x)^2 (1 + x)), {x, 0, 20}], x] (* Eric W. Weisstein, Jun 20 2017 *)
-
PARI
forstep(n=0,200,[3,5],print1(n", ")) \\ Charles R Greathouse IV, Oct 17 2011
-
Python
def A047470(n): return (n-1<<2)-(n&1^1) # Chai Wah Wu, Mar 30 2024
Formula
a(n) = a(n-1) + 4 + (-1)^n.
a(n) = a(n-1) + a(n-2) - a(n-3).
G.f.: (3x+5*x^2)/((1-x)*(1-x^2)).
a(n) = 8*n - a(n-1) - 13 (with a(1)=0). - Vincenzo Librandi, Aug 06 2010
a(n) = 4*n -(9 + (-1)^n)/2. - Arkadiusz Wesolowski, Sep 18 2012
E.g.f: (10 - exp(-x) + (8*x - 9)*exp(x))/2. - Franck Maminirina Ramaharo, Jul 22 2018
Sum_{n>=2} (-1)^n/a(n) = (sqrt(2)-1)*Pi/16 + log(2)/2 - sqrt(2)*log(sqrt(2)+1)/8. - Amiram Eldar, Dec 11 2021
Extensions
More terms from Vincenzo Librandi, Aug 06 2010
Comments