cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A047470 Numbers that are congruent to {0, 3} mod 8.

Original entry on oeis.org

0, 3, 8, 11, 16, 19, 24, 27, 32, 35, 40, 43, 48, 51, 56, 59, 64, 67, 72, 75, 80, 83, 88, 91, 96, 99, 104, 107, 112, 115, 120, 123, 128, 131, 136, 139, 144, 147, 152, 155, 160, 163, 168, 171, 176, 179, 184, 187, 192, 195, 200, 203, 208, 211, 216, 219, 224, 227, 232
Offset: 1

Views

Author

Keywords

Comments

Maximum number of squares attacked by a queen on an n X n chessboard. - Stewart Gordon, Mar 23 2001
Equivalently, maximum vertex degree in the n X n queen graph. - Eric W. Weisstein, Jun 20 2017
Number of squares attacked by a queen on a toroidal chessboard. - Diego Torres (torresvillarroel(AT)hotmail.com), May 19 2001
List of squared distances between points of diamond 'lattice' with minimal distance sqrt(3). - Arnold Neumaier (Arnold.Neumaier(AT)univie.ac.at), Aug 01 2003
Draw a figure-eight knot diagram on the plane and assign a list of nonnegative numbers at each crossing as follows. Start with 0 and choose a crossing on the knot. Pick a direction and walk around the knot, appending the following nonnegative number everytime a crossing is visited. Two series of sequences are obtained: this sequence, A047535, A047452, A047617 and A047615, A047461, A047452, A047398 (see example). - Franck Maminirina Ramaharo, Jul 22 2018

Examples

			From _Franck Maminirina Ramaharo_, Jul 22 2018: (Start)
Consider the following equivalent figure-eight knot diagrams:
+---------------------+           +-----------------n
|                     |           |                 |
|           +---------B-----+     |           w-----A---e
|           |         |     |     |           |     |   |
|     n-----C---+     |     |     |           |     |   |
|     |     |   |     |     | <=> |   +-------B-----s   |
|     |     +---D-----+     |     |   |       |         |
|     |         |           |     |   |       |         |
w-----A---------e           |     +---C-------D---------+
      |                     |         |       |
      s---------------------+         +-------+
Uppercases A,B,C,D denote crossings, and lowercases n,s,w,e denote directions. Due to symmetry and ambient isotopy, all possible sequences are obtained by starting from crossing A and choose either direction 'n' or 's'.
Direction 'n':
A: 0, 3,  8, 11, 16, 19, 24, 27, 32, 35, 40, ... (this sequence);
B: 4, 7, 12, 15, 20, 23, 28, 31, 36, 39, 44, ... A047535;
C: 1, 6,  9, 14, 17, 22, 25, 30, 33, 38, 41, ... A047452;
D: 2, 5, 10, 13, 18, 21, 26, 29, 34, 37, 42, ... A047617.
Direction 's':
A: 0, 5,  8, 13, 16, 21, 24, 29, 32, 37, 40, ... A047615;
B: 1, 4,  9, 12, 17, 20, 25, 28, 33, 36, 41, ... A047461;
C: 2, 7, 10, 15, 18, 23, 26, 31, 34, 39, 42, ... A047524;
D: 3, 6, 11, 14, 19, 22, 27, 30, 35, 38, 43, ... A047398.
(End)
		

Crossrefs

Programs

  • GAP
    a:=[0,3,8];; for n in [4..50] do a[n]:=a[n-1]+a[n-2]-a[n-3]; od; a; # Muniru A Asiru, Jul 23 2018
    
  • Maple
    a:=n->add(4+(-1)^j,j=1..n):seq(a(n),n=0..64); # Zerinvary Lajos, Dec 13 2008
  • Mathematica
    With[{c = 8 Range[0, 30]}, Sort[Join[c, c + 3]]] (* Harvey P. Dale, Oct 11 2011 *)
    Table[(8 n - 9 - (-1)^n)/2, {n, 20}] (* Eric W. Weisstein, Jun 20 2017 *)
    LinearRecurrence[{1, 1, -1}, {0, 3, 8}, 20] (* Eric W. Weisstein, Jun 20 2017 *)
    CoefficientList[Series[(x (3 + 5 x))/((-1 + x)^2 (1 + x)), {x, 0, 20}], x]  (* Eric W. Weisstein, Jun 20 2017 *)
  • PARI
    forstep(n=0,200,[3,5],print1(n", ")) \\ Charles R Greathouse IV, Oct 17 2011
    
  • Python
    def A047470(n): return (n-1<<2)-(n&1^1) # Chai Wah Wu, Mar 30 2024

Formula

a(n) = a(n-1) + 4 + (-1)^n.
a(n) = a(n-1) + a(n-2) - a(n-3).
a(n) = A042948(n) + A005843(n).
G.f.: (3x+5*x^2)/((1-x)*(1-x^2)).
a(n) = 8*n - a(n-1) - 13 (with a(1)=0). - Vincenzo Librandi, Aug 06 2010
a(n+1) = Sum_{k>=0} A030308(n,k)*A171497(k). - Philippe Deléham, Oct 17 2011
a(n) = 4*n -(9 + (-1)^n)/2. - Arkadiusz Wesolowski, Sep 18 2012
E.g.f: (10 - exp(-x) + (8*x - 9)*exp(x))/2. - Franck Maminirina Ramaharo, Jul 22 2018
Sum_{n>=2} (-1)^n/a(n) = (sqrt(2)-1)*Pi/16 + log(2)/2 - sqrt(2)*log(sqrt(2)+1)/8. - Amiram Eldar, Dec 11 2021

Extensions

More terms from Vincenzo Librandi, Aug 06 2010