cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 155 results. Next

A291751 Lexicographically earliest such sequence a that a(i) = a(j) => A003557(i) = A003557(j) and A048250(i) = A048250(j), for all i, j.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 6, 11, 12, 13, 13, 14, 10, 15, 16, 17, 18, 19, 13, 20, 21, 22, 23, 24, 25, 26, 18, 27, 28, 29, 28, 30, 31, 32, 33, 34, 22, 35, 36, 37, 38, 26, 28, 39, 40, 41, 26, 42, 29, 43, 26, 44, 45, 46, 32, 47, 48, 35, 49, 50, 51, 52, 53, 54, 35, 52, 26, 55, 56, 57, 58, 59, 35, 60, 45, 61, 62, 63, 51, 64, 65, 66, 67, 68, 46, 69, 70, 47, 71
Offset: 1

Views

Author

Antti Karttunen, Sep 06 2017

Keywords

Comments

Restricted growth sequence transform of A291750, which means that this is the lexicographically least sequence a, such that for all i, j: a(i) = a(j) <=> A291750(i) = A291750(j) <=> A003557(i) = A003557(j) and A048250(i) = A048250(j). That this is equal to the definition given in the title follows because any such lexicographically least sequence satisfying relation <=> is also the least sequence satisfying relation => with the same parameters.
Sigma (A000203) and psi (A001615) are functions of this sequence. See comments in A291750 for the reason. For example, to find the value of A001615(n) when we know just a(n), but without knowing n, let m be the least i for which a(i) = a(n); then A001615(n) = A003991(A291750(m)) = A003557(m) * A048250(m).

Crossrefs

Differs from A286603 for the first time at n = 25, where a(25) = 21, while A286603(25) = 14.

Programs

  • PARI
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A003557(n) = n/factorback(factor(n)[, 1]); \\ From A003557
    A048250(n) = if(n<1, 0, sumdiv(n, d, if(core(d)==d, d)));
    A291750(n) = (1/2)*(2 + ((A003557(n)+A048250(n))^2) - A003557(n) - 3*A048250(n));
    v291751 = rgs_transform(vector(65537,n,A291750(n)));
    A291751(n) = v291751[n];

Extensions

Name changed and comments added by Antti Karttunen, Nov 24 2018

A291750 Compound filter: a(n) = P(A003557(n), A048250(n)), where P(n,k) is sequence A000027 used as a pairing function.

Original entry on oeis.org

1, 4, 7, 8, 16, 67, 29, 19, 18, 154, 67, 80, 92, 277, 277, 53, 154, 94, 191, 173, 497, 631, 277, 109, 50, 862, 75, 302, 436, 2557, 497, 169, 1129, 1432, 1129, 142, 704, 1771, 1541, 214, 862, 4561, 947, 668, 328, 2557, 1129, 179, 98, 236, 2557, 905, 1432, 199, 2557, 355, 3161, 4006, 1771, 2630, 1892, 4561, 564, 593, 3487, 10297, 2279, 1487, 4561, 10297, 2557
Offset: 1

Views

Author

Antti Karttunen, Sep 04 2017

Keywords

Comments

A000203 (sigma(n)) is a function of this sequence, because formula
A000203(n) = A092261(n) * A295294(n)
can be rewritten as a relation:
where A057521(n) = A064549(A003557(n)), thus A000203(n) is a function of A003557(n) and A048250(n), the values that are packed here into a(n).
A001615 (Dedekind's psi) is a function of this sequence, because it can be written as A001615(n) = A003557(n)*A048250(n).

Crossrefs

Cf. A000027, A000203, A001615, A003557, A048250, A291751 (rgs-version of this filter).

Programs

Formula

a(n) = (1/2)*(2 + ((A003557(n) + A048250(n))^2) - A003557(n) - 3*A048250(n)).

A325385 a(n) = gcd(n-A048250(n), n-A162296(n)).

Original entry on oeis.org

1, 1, 1, 1, 1, 6, 1, 1, 5, 2, 1, 4, 1, 2, 3, 1, 1, 3, 1, 2, 1, 2, 1, 12, 19, 2, 1, 4, 1, 6, 1, 1, 3, 2, 1, 1, 1, 2, 1, 2, 1, 6, 1, 4, 3, 2, 1, 4, 41, 1, 3, 2, 1, 6, 1, 8, 1, 2, 1, 12, 1, 2, 1, 1, 1, 6, 1, 2, 3, 2, 1, 3, 1, 2, 1, 4, 1, 6, 1, 2, 1, 2, 1, 4, 1, 2, 3, 4, 1, 18, 7, 4, 1, 2, 5, 12, 1, 1, 3, 1, 1, 6, 1, 2, 3
Offset: 1

Views

Author

Antti Karttunen, Apr 24 2019

Keywords

Crossrefs

Programs

Formula

a(n) = gcd(n-A048250(n), n-A162296(n)).
a(n) = gcd(A325313(n), A325314(n)).
a(A228058(n)) = A325375(n).

A325973 Arithmetic mean of {sum of unitary divisors} and {sum of squarefree divisors}: a(n) = (1/2) * (A034448(n) + A048250(n)).

Original entry on oeis.org

1, 3, 4, 4, 6, 12, 8, 6, 7, 18, 12, 16, 14, 24, 24, 10, 18, 21, 20, 24, 32, 36, 24, 24, 16, 42, 16, 32, 30, 72, 32, 18, 48, 54, 48, 31, 38, 60, 56, 36, 42, 96, 44, 48, 42, 72, 48, 40, 29, 48, 72, 56, 54, 48, 72, 48, 80, 90, 60, 96, 62, 96, 56, 34, 84, 144, 68, 72, 96, 144, 72, 51, 74, 114, 64, 80, 96, 168, 80, 60, 43, 126
Offset: 1

Views

Author

Antti Karttunen, Jun 02 2019

Keywords

Comments

This is not multiplicative: a(4) = 4, a(9) = 7, but a(36) = 31, not 28. However, the function acts multiplicatively on certain subsequences of natural numbers, like for example when restricted to A048107, where this sequence coincides with A326043.

Examples

			For n = 36, its divisors are 1, 2, 3, 4, 6, 9, 12, 18, 36. Of these, unitary divisors are 1, 4, 9 and 36, so A034448(36) = 1+4+9+36 = 50, while the squarefree divisors are 1, 2, 3 and 6, so A048250(36) = 1+2+3+6 = 12, thus a(36) = (50+12)/2 = 31.
For n = 495, its divisors are 1, 3, 5, 9, 11, 15, 33, 45, 55, 99, 165, 495. Of these, unitary are 1, 5, 9, 11, 45, 55, 99, 495, whose sum is A034448(495) = 720, while the squarefree divisors are 1, 3, 5, 11, 15, 33, 55, 165, and their sum is A048250(495) = 288. Thus a(495) = (720+288)/2 = 504. Also for 495, whose prime factorization is 3^2 * 5^1 * 11^1 this can be computed faster as the average of ((3^2)+1)*(5+1)*(11+1) and (3+1)*(5+1)*(11+1), thus (1/2)*(3+(3^2)+2)*(5+1)*(11+1) = 504.
		

Crossrefs

Programs

Formula

a(n) = (1/2) * (A034448(n) + A048250(n)).
a(n) = A000203(n) - A325974(n).
a(n) = n + A325977(n).
a(A048107(n)) = A326043(A048107(n)).
For n >= 1, a(2^n) = A052548(n-1) = 2^(n-1) + 2.
For n >= 1, a(3^n) = A289521(n) = (3^n + 5)/2.
Sum_{k=1..n} a(k) ~ c * n^2, where c = (zeta(2)/zeta(3) + 1)/4 = 0.5921081944... . - Amiram Eldar, Feb 22 2024

A325313 a(n) = A048250(n) - n, where A048250(n) is the sum of squarefree divisors of n.

Original entry on oeis.org

0, 1, 1, -1, 1, 6, 1, -5, -5, 8, 1, 0, 1, 10, 9, -13, 1, -6, 1, -2, 11, 14, 1, -12, -19, 16, -23, -4, 1, 42, 1, -29, 15, 20, 13, -24, 1, 22, 17, -22, 1, 54, 1, -8, -21, 26, 1, -36, -41, -32, 21, -10, 1, -42, 17, -32, 23, 32, 1, 12, 1, 34, -31, -61, 19, 78, 1, -14, 27, 74, 1, -60, 1, 40, -51, -16, 19, 90, 1, -62, -77, 44, 1, 12, 23, 46
Offset: 1

Views

Author

Antti Karttunen, Apr 21 2019

Keywords

Crossrefs

Programs

Formula

a(n) = A048250(n) - n.
a(n) = A325314(n) - A033879(n).
a(A228058(n)) = -A325319(n).

A066086 Greatest common divisor of product (p-1) and product (p+1), where p ranges over distinct prime divisors of n; a(n) = gcd(A048250(n), A173557(n)).

Original entry on oeis.org

1, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 2, 2, 6, 8, 1, 2, 2, 2, 2, 4, 2, 2, 2, 2, 6, 2, 6, 2, 8, 2, 1, 4, 2, 24, 2, 2, 6, 8, 2, 2, 12, 2, 2, 8, 2, 2, 2, 2, 2, 8, 6, 2, 2, 8, 6, 4, 2, 2, 8, 2, 6, 4, 1, 12, 4, 2, 2, 4, 24, 2, 2, 2, 6, 8, 6, 12, 24, 2, 2, 2, 2, 2, 12, 4, 6, 8, 2, 2, 8, 8, 2, 4, 2, 24, 2, 2, 6, 4
Offset: 1

Views

Author

Labos Elemer, Dec 04 2001

Keywords

Comments

Frequently equal, but not identical, to A009223 (i.e. GCD of sigma and phi of n).

Crossrefs

Programs

  • Mathematica
    ffi[x_] := Flatten[FactorInteger[x]] lf[x_] := Length[FactorInteger[x]] ba[x_] := Table[Part[ffi[x], 2*w-1], {w, 1, lf[x]}] cor[x_] := Apply[Times, ba[x]] g1[x_] := GCD[DivisorSigma[1, x], EulerPhi[x]] g2[x_] := GCD[DivisorSigma[1, cor[x]], EulerPhi[cor[x]]] Table[g2[w], {w, 1, 128}]
    a[n_] := If[n == 1, 1, Module[{f=FactorInteger[n]}, GCD[Times@@((#-1)& @@@ f), Times@@((#+1)& @@@ f)]]]; Array[a, 100] (* Amiram Eldar, Dec 05 2018 *)
  • PARI
    a(n)=my(f=factor(n)[,1]);gcd(prod(i=1,#f,f[i]+1),prod(i=1,#f,f[i]-1)) \\ Charles R Greathouse IV, Feb 14 2013

Formula

a(n) = gcd(A048250(n), A023900(n)) = gcd(A000203(A007947(n)), A000010(A007947(n))).
a(n) = A322360(n) / A322359(n). - Antti Karttunen, Dec 04 2018

Extensions

Name edited, part of the old name transferred to the formula section by Antti Karttunen, Dec 04 2018

A295300 Lexicographically earliest sequence such that a(i) = a(j) => f(i) = f(j), where f(n) = [A003557(n), A046523(n), A048250(n)].

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 32, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 44, 49, 50, 51, 44, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 58, 62, 65, 66, 67, 68, 69, 70, 58, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 80
Offset: 1

Views

Author

Antti Karttunen, Nov 19 2017

Keywords

Comments

Restricted growth sequence transform of A291752.
For all i, j:
a(i) = a(j) => A291751(i) = A291751(j),
a(i) = a(j) => A326199(i) = A326199(j) => A294877(i) = A294877(j),
a(i) = a(j) => A322021(i) = A322021(j),
a(i) = a(j) => A295888(i) = A295888(j),
a(i) = a(j) => A296090(i) = A296090(j).

Crossrefs

Programs

  • PARI
    up_to = 100000;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A003557(n) = n/factorback(factor(n)[, 1]); \\ From A003557
    A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); };  \\ From A046523
    A048250(n) = if(n<1, 0, sumdiv(n, d, if(core(d)==d, d)));
    A291750(n) = (1/2)*(2 + ((A003557(n)+A048250(n))^2) - A003557(n) - 3*A048250(n));
    Aux295300(n) = (1/2)*(2 + ((A046523(n) + A291750(n))^2) - A046523(n) - 3*A291750(n));
    v295300 = rgs_transform(vector(up_to,n,Aux295300(n)));
    A295300(n) = v295300[n];

Extensions

Name changed and the comments section added by Antti Karttunen, Jul 13 2019

A295295 Sum of squarefree divisors of the powerful part of n: a(n) = A048250(A057521(n)).

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 1, 3, 4, 1, 1, 3, 1, 1, 1, 3, 1, 4, 1, 3, 1, 1, 1, 3, 6, 1, 4, 3, 1, 1, 1, 3, 1, 1, 1, 12, 1, 1, 1, 3, 1, 1, 1, 3, 4, 1, 1, 3, 8, 6, 1, 3, 1, 4, 1, 3, 1, 1, 1, 3, 1, 1, 4, 3, 1, 1, 1, 3, 1, 1, 1, 12, 1, 1, 6, 3, 1, 1, 1, 3, 4, 1, 1, 3, 1, 1, 1, 3, 1, 4, 1, 3, 1, 1, 1, 3, 1, 8, 4, 18, 1, 1, 1, 3, 1
Offset: 1

Views

Author

Antti Karttunen, Nov 25 2017

Keywords

Comments

The sum of the squarefree divisors of n whose square divides n. - Amiram Eldar, Oct 13 2023

Crossrefs

Programs

  • Mathematica
    Array[DivisorSum[#/Denominator[#/Apply[Times, FactorInteger[#][[All, 1]]]^2], # &, SquareFreeQ] &, 105] (* Michael De Vlieger, Nov 26 2017, after Jean-François Alcover at A057521 *)
    f[p_, e_] := If[e == 1, 1, p+1] ; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 18 2023 *)
  • PARI
    a(n) = my(f=factor(n)); for (i=1, #f~, if (f[i,2]==1, f[i,1]=1)); sumdiv(factorback(f), d, d*issquarefree(d)); \\ Michel Marcus, Jan 29 2021

Formula

Multiplicative with a(p) = 1 and a(p^e) = (p+1) for e > 1.
a(n) = A048250(n) / A092261(n).
a(n) = Sum_{d^2|n} d * mu(d)^2. - Wesley Ivan Hurt, Feb 13 2022
From Amiram Eldar, Sep 18 2023: (Start)
Dirichlet g.f.: zeta(s) * zeta(2*s-1) / zeta(4*s-2).
Sum_{k=1..n} a(k) ~ (3*n/Pi^2) * (log(n) + 3*gamma - 1 - 4*zeta'(2)/zeta(2)), where gamma is Euler's constant (A001620). (End)
a(n) = A048250(n) - A344137(n). - Amiram Eldar, Oct 13 2023

A344755 Numbers k such that A344753(k) is a multiple of A048250(k), and k is a multiple of A344753(k)/A048250(k).

Original entry on oeis.org

6, 28, 150, 496, 528, 1980, 4560, 8128, 8736, 11400, 19872, 20664, 75840, 82080, 253080, 254880, 741744, 1627290, 5130300, 5607360, 7529760, 19645440, 20718720, 33550336, 35092512, 45643392, 45995040, 56424960, 86944320, 169910136, 174013920, 180442080, 196378992, 242040960, 304577280, 314511360, 326611440, 451344960
Offset: 1

Views

Author

Antti Karttunen, May 29 2021

Keywords

Comments

Numbers k for which A344753(k)/A048250(k) is a divisor of k.
Perfect numbers (A000396, including also any hypothetical odd terms) are included as only on them A001615 coincides with A344753, and because A001615(n) = A003557(n)*A048250(n), with A003557(n) being a divisor of n.

Crossrefs

Subsequence of A344754.
Cf. also A344700.

Programs

  • PARI
    A048250(n) = factorback(apply(p -> p+1,factor(n)[,1]));
    A344753(n) = sumdiv(n,d,(dA344755(n) = { my(t=A344753(n),u=A048250(n)); ((0==(t%u))&&(0==(n%(t/u)))); };

A323368 Lexicographically earliest sequence such that a(i) = a(j) => A000035(i) = A000035(j) and A003557(i) = A003557(j) and A048250(i) = A048250(j), for all i, j.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 15, 23, 24, 25, 26, 27, 28, 29, 21, 30, 31, 32, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 29, 31, 43, 44, 45, 46, 47, 48, 49, 46, 50, 51, 52, 53, 54, 55, 39, 56, 57, 58, 59, 60, 61, 62, 59, 46, 63, 64, 65, 66, 67, 62, 68, 51, 69, 70, 71, 58, 72, 73, 74, 75, 76, 77, 78, 79, 54, 80, 59, 75, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90
Offset: 1

Views

Author

Antti Karttunen, Jan 12 2019

Keywords

Comments

For all i, j:
a(i) = a(j) => A007814(i) = A007814(j),
a(i) = a(j) => A291751(i) = A291751(j),
a(i) = a(j) => A296089(i) = A296089(j),
a(i) = a(j) => A323238(i) = A323238(j).

Crossrefs

Differs from A296089 for the first time at n=103, where a(103)=88, while A296089(103)=56.
Cf. also A323366.

Programs

  • PARI
    up_to = 65537;
    rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om,invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om,invec[i],i); outvec[i] = u; u++ )); outvec; };
    A003557(n) = { my(f=factor(n)); for(i=1, #f~, f[i, 2] = f[i, 2]-1); factorback(f); };
    A048250(n) = factorback(apply(p -> p+1,factor(n)[,1]));
    v323368 = rgs_transform(vector(up_to, n, [(n%2), A003557(n), A048250(n)]));
    A323368(n) = v323368[n];
Showing 1-10 of 155 results. Next