cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A007528 Primes of the form 6k-1.

Original entry on oeis.org

5, 11, 17, 23, 29, 41, 47, 53, 59, 71, 83, 89, 101, 107, 113, 131, 137, 149, 167, 173, 179, 191, 197, 227, 233, 239, 251, 257, 263, 269, 281, 293, 311, 317, 347, 353, 359, 383, 389, 401, 419, 431, 443, 449, 461, 467, 479, 491, 503, 509, 521, 557, 563, 569, 587
Offset: 1

Views

Author

Keywords

Comments

For values of k see A024898.
Also primes p such that p^q - 2 is not prime where q is an odd prime. These numbers cannot be prime because the binomial p^q = (6k-1)^q expands to 6h-1 some h. Then p^q-2 = 6h-1-2 is divisible by 3 thus not prime. - Cino Hilliard, Nov 12 2008
a(n) = A211890(3,n-1) for n <= 4. - Reinhard Zumkeller, Jul 13 2012
There exists a polygonal number P_s(3) = 3s - 3 = a(n) + 1. These are the only primes p with P_s(k) = p + 1, s >= 3, k >= 3, since P_s(k) - 1 is composite for k > 3. - Ralf Steiner, May 17 2018
From Bernard Schott, Feb 14 2019: (Start)
A theorem due to Andrzej Mąkowski: every integer greater than 161 is the sum of distinct primes of the form 6k-1. Examples: 162 = 5 + 11 + 17 + 23 + 47 + 59; 163 = 17 + 23 + 29 + 41 + 53. (See Sierpiński and David Wells.)
{2,3} Union A002476 Union {this sequence} = A000040.
Except for 2 and 3, all Sophie Germain primes are of the form 6k-1.
Except for 3, all the lesser of twin primes are also of the form 6k-1.
Dirichlet's theorem on arithmetic progressions states that this sequence is infinite. (End)
For all elements of this sequence p=6*k-1, there are no (x,y) positive integers such that k=6*x*y-x+y. - Pedro Caceres, Apr 06 2019

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 870.
  • A. Mąkowski, Partitions into unequal primes, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astr. Phys. 8 (1960), 125-126.
  • Wacław Sierpiński, Elementary Theory of Numbers, p. 144, Warsaw, 1964.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books, Revised edition, 1997, p. 127.

Crossrefs

Intersection of A016969 and A000040.
Prime sequences A# (k,r) of the form k*n+r with 0 <= r <= k-1 (i.e., primes == r (mod k), or primes p with p mod k = r) and gcd(r,k)=1: A000040 (1,0), A065091 (2,1), A002476 (3,1), A003627 (3,2), A002144 (4,1), A002145 (4,3), A030430 (5,1), A045380 (5,2), A030431 (5,3), A030433 (5,4), A002476 (6,1), this sequence (6,5), A140444 (7,1), A045392 (7,2), A045437 (7,3), A045471 (7,4), A045458 (7,5), A045473 (7,6), A007519 (8,1), A007520 (8,3), A007521 (8,5), A007522 (8,7), A061237 (9,1), A061238 (9,2), A061239 (9,4), A061240 (9,5), A061241 (9,7), A061242 (9,8), A030430 (10,1), A030431 (10,3), A030432 (10,7), A030433 (10,9), A141849 (11,1), A090187 (11,2), A141850 (11,3), A141851 (11,4), A141852 (11,5), A141853 (11,6), A141854 (11,7), A141855 (11,8), A141856 (11,9), A141857 (11,10), A068228 (12,1), A040117 (12,5), A068229 (12,7), A068231 (12,11).
Cf. A034694 (smallest prime == 1 (mod n)).
Cf. A038700 (smallest prime == n-1 (mod n)).
Cf. A038026 (largest possible value of smallest prime == r (mod n)).
Cf. A001359 (lesser of twin primes), A005384 (Sophie Germain primes).

Programs

  • GAP
    Filtered(List([1..100],n->6*n-1),IsPrime); # Muniru A Asiru, May 19 2018
  • Haskell
    a007528 n = a007528_list !! (n-1)
    a007528_list = [x | k <- [0..], let x = 6 * k + 5, a010051' x == 1]
    -- Reinhard Zumkeller, Jul 13 2012
    
  • Maple
    select(isprime,[seq(6*n-1,n=1..100)]); # Muniru A Asiru, May 19 2018
  • Mathematica
    Select[6 Range[100]-1,PrimeQ]  (* Harvey P. Dale, Feb 14 2011 *)
  • PARI
    forprime(p=2, 1e3, if(p%6==5, print1(p, ", "))) \\ Charles R Greathouse IV, Jul 15 2011
    
  • PARI
    forprimestep(p=5,1000,6, print1(p", ")) \\ Charles R Greathouse IV, Mar 03 2025
    

Formula

A003627 \ {2}. - R. J. Mathar, Oct 28 2008
Conjecture: Product_{n >= 1} ((a(n) - 1) / (a(n) + 1)) * ((A002476(n) + 1) / (A002476(n) - 1)) = 3/4. - Dimitris Valianatos, Feb 11 2020
From Vaclav Kotesovec, May 02 2020: (Start)
Product_{k>=1} (1 - 1/a(k)^2) = 9*A175646/Pi^2 = 1/1.060548293.... =4/(3*A333240).
Product_{k>=1} (1 + 1/a(k)^2) = A334482.
Product_{k>=1} (1 - 1/a(k)^3) = A334480.
Product_{k>=1} (1 + 1/a(k)^3) = A334479. (End)
Legendre symbol (-3, a(n)) = -1 and (-3, A002476(n)) = +1, for n >= 1. For prime 3 one sets (-3, 3) = 0. - Wolfdieter Lang, Mar 03 2021

A324076 Integers which are the sum of distinct primes of the form 6*n - 1.

Original entry on oeis.org

5, 11, 16, 17, 22, 23, 28, 29, 33, 34, 39, 40, 41, 45, 46, 47, 51, 52, 53, 56, 57, 58, 59, 62, 63, 64, 68, 69, 70, 71, 74, 75, 76, 80, 81, 82, 83, 85, 86, 87, 88, 89, 92, 93, 94, 97, 98, 99, 100, 101, 103, 104, 105, 106
Offset: 1

Views

Author

Bernard Schott, Feb 14 2019

Keywords

Comments

A theorem due to Andrzej Makowski: every natural number greater than 161 is the sum of distinct primes of the form "6n-1". (See Sierpiński and David Wells.) All the numbers < 161 and which are the sum of numbers of the form "6n-1" are here in this sequence, complement of A048264.

Examples

			22 = 5 + 17; 39 = 5 + 11 + 23; 68 = 5 + 11 + 23 + 29; 139 = 11 + 17 + 23 + 29 + 59.
		

References

  • A. Mąkowski, Partitions into unequal primes, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astr. Phys. 8 (1960), 125-126.
  • Wacław Sierpiński, Elementary Theory of Numbers, p. 144, Warsaw, 1964.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books, Revised edition, 1997, p. 127.

Crossrefs

Cf. A002145, A048262 (not the sum of distinct primes of the form 4n-1)
Cf. A002144, A048263 (not the sum of distinct primes of the form 4n+1).
Cf. A007528, A048264 (not the sum of distinct primes of the form 6n-1).
Cf. A002476, A048265 (not the sum of distinct primes of the form 6n+1).

Programs

  • Mathematica
    Select[Range@ 60, Count[IntegerPartitions[#], ?(And[UnsameQ @@ #, AllTrue[#, And[PrimeQ@ #, Mod[#, 6] == 5] &]] &)] > 0 &] (* _Michael De Vlieger, Feb 15 2019 *)
    With[{prs=Select[Prime[Range[30]],Mod[#,6]==5&]},Select[Union[Rest[ Total/@ Subsets[ prs]]],#<=Max[prs]&]] (* Harvey P. Dale, Mar 11 2023 *)
  • Python
    def A324076(n): return int('050b101116171c1d21222728292d2e2f33343538393a3b3e3f40444546474a4b4c5051525355565758595c5d5e61626364656768696a6b6d6e6f707173747576797a7b7c7e7f808182838485868788898a8b8c8d8e909192939495969798999a9c9d9e9fa0'[n-1<<1:n<<1],16) if n<102 else n+60 # Chai Wah Wu, Feb 26 2025
    
  • Python
    from itertools import combinations
    from sympy import primerange
    def A324076(n):
        if n>101: return n+60
        plist = list(p for p in primerange(161) if p%6==5)
        xlist = sorted(set(sum(d) for i in range(1,len(plist)+1) for d in combinations(plist,i) if sum(d) < 162))
        return xlist[n-1] # Chai Wah Wu, Feb 28 2025

Formula

a(n) = n + 60 for n > 101. - Stefano Spezia, Mar 01 2025

A048264 Numbers that aren't the sum of distinct primes of the form 6k+5.

Original entry on oeis.org

1, 2, 3, 4, 6, 7, 8, 9, 10, 12, 13, 14, 15, 18, 19, 20, 21, 24, 25, 26, 27, 30, 31, 32, 35, 36, 37, 38, 42, 43, 44, 48, 49, 50, 54, 55, 60, 61, 65, 66, 67, 72, 73, 77, 78, 79, 84, 90, 91, 95, 96, 102, 108, 114, 119, 120, 125, 143, 155, 161
Offset: 1

Views

Author

Keywords

Comments

A theorem due to Andrzej Makowski: every natural number greater than 161 is the sum of distinct primes of the form 6k-1 (see references). - Bernard Schott, Apr 12 2021

References

  • A. Mąkowski, Partitions into unequal primes, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astr. Phys. 8 (1960), 125-126.
  • Wacław Sierpiński, Elementary Theory of Numbers, p. 144, Warsaw, 1964.
  • David Wells, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books, Revised edition, 1997, p. 127, entry 161.

Crossrefs

Showing 1-3 of 3 results.