A048473 a(0)=1, a(n) = 3*a(n-1) + 2; a(n) = 2*3^n - 1.
1, 5, 17, 53, 161, 485, 1457, 4373, 13121, 39365, 118097, 354293, 1062881, 3188645, 9565937, 28697813, 86093441, 258280325, 774840977, 2324522933, 6973568801, 20920706405, 62762119217, 188286357653, 564859072961, 1694577218885, 5083731656657, 15251194969973, 45753584909921
Offset: 0
Examples
a(0) = 1; a(1) = 1 + 3 + 1 = 5; a(2) = 1 + 3 + 9 + 3 + 1 = 17; a(3) = 1 + 3 + 9 + 27 + 9 + 3 + 1 = 53; etc. - _Philippe Deléham_, Feb 23 2014
References
- Theoni Pappas, Math Stuff, Wide World Publ/Tetra, San Carlos CA, page 15, 2002.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Creighton Dement, A paper on floretions and quaternions, some questions, The Math Forum.
- Eric Weisstein's World of Mathematics, Dominating Set.
- Eric Weisstein's World of Mathematics, Helm Graph.
- Index entries for linear recurrences with constant coefficients, signature (4,-3).
Crossrefs
Programs
-
Magma
[2*3^n - 1: n in [0..30]]; // Vincenzo Librandi, Sep 23 2011
-
Maple
g:= ((1+x)/(1-3*x)/(1-x)): gser:=series(g, x=0, 43): seq(coeff(gser, x, n), n=0..30); # Zerinvary Lajos, Jan 11 2009; typo fixed by Marko Mihaily, Mar 07 2009
-
Mathematica
NestList[3 # + 2 &, 1, 30] (* Harvey P. Dale, Mar 06 2012 *) LinearRecurrence[{4, -3}, {1, 5}, 30] (* Harvey P. Dale, Mar 06 2012 *) Table[2 3^n - 1, {n, 20}] (* Eric W. Weisstein, May 28 2017 *) 2 3^Range[20] - 1 (* Eric W. Weisstein, May 28 2017 *)
-
PARI
first(m)=vector(m,n,n--;2*3^n - 1) \\ Anders Hellström, Dec 11 2015
Formula
n-th difference of a(n), a(n-1), ..., a(0) is 2^(n+1) for n=1, 2, 3, ...
a(0)=1, a(n) = a(n-1) + 3^n + 3^(n-1). - Lee Reeves, May 10 2004
a(n) = (3^n + 3^(n+1) - 2)/2. - Creighton Dement, Jul 31 2004
(1, 5, 17, 53, 161, ...) = Ternary (1, 12, 122, 1222, 12222, ...). - Gary W. Adamson, May 02 2005
Row sums of triangle A134347. Also, binomial transform of A046055: (1, 4, 8, 16, 32, 64, ...); and double binomial transform of A010684: (1, 3, 1, 3, 1, 3, ...). - Gary W. Adamson, Oct 21 2007
G.f.: (1+x)/((1-3*x)*(1-x)). - Zerinvary Lajos, Jan 11 2009; corrected by R. J. Mathar, Jan 21 2009
a(0)=1, a(1)=5, a(n) = 4*a(n-1) - 3*a(n-2). - Harvey P. Dale, Mar 06 2012
a(n) = Sum_{k=0..n} A112468(n,k)*4^k. - Philippe Deléham, Feb 23 2014
E.g.f.: exp(x)*(2*exp(2*x) - 1). - Elmo R. Oliveira, Mar 08 2025
Extensions
Better description from Amarnath Murthy, May 27 2001
Comments