A048691 a(n) = d(n^2), where d(k) = A000005(k) is the number of divisors of k.
1, 3, 3, 5, 3, 9, 3, 7, 5, 9, 3, 15, 3, 9, 9, 9, 3, 15, 3, 15, 9, 9, 3, 21, 5, 9, 7, 15, 3, 27, 3, 11, 9, 9, 9, 25, 3, 9, 9, 21, 3, 27, 3, 15, 15, 9, 3, 27, 5, 15, 9, 15, 3, 21, 9, 21, 9, 9, 3, 45, 3, 9, 15, 13, 9, 27, 3, 15, 9, 27, 3, 35, 3, 9, 15, 15, 9, 27, 3, 27
Offset: 1
References
- A. M. Gleason et al., The William Lowell Putnam Mathematical Competitions, Problems & Solutions:1938-1960 Soln. to Prob. 1 1960, p. 516, MAA, 1980.
- Ross Honsberger, More Mathematical Morsels, Morsel 43, pp. 232-3, DMA No. 10 MAA, 1991.
- Loren C. Larson, Problem-Solving Through Problems, Prob. 3.3.7, p. 102, Springer 1983.
- Alfred S. Posamentier and Charles T. Salkind, Challenging Problems in Algebra, Prob. 9-9 pp. 143 Dover NY, 1988.
- D. O. Shklarsky et al., The USSR Olympiad Problem Book, Soln. to Prob. 123, pp. 28, 217-8, Dover NY.
- Wacław Sierpiński, Elementary Theory of Numbers, pp. 71-2, Elsevier, North Holland, 1988.
- James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 91.
- Charles W. Trigg, Mathematical Quickies, Question 194, pp. 53, 168, Dover, 1985.
Links
- Enrique Pérez Herrero, Table of n, a(n) for n = 1..10000
- Ovidiu Bagdasar, On Some Functions Involving the lcm and gcd of Integer Tuples.
- Umberto Cerruti, Percorsi tra i numeri (in Italian), pages 3-4.
- Daniele A. Gewurz and Francesca Merola, Sequences realized as Parker vectors of oligomorphic permutation groups, J. Integer Seq., Vol. 6 (2003), Article 03.1.6.
- John Scholes, Problem A1 of 21st Putnam Competition 1960, 2002. [Wayback Machine link]
- Wacław Sierpiński, Elementary Theory of Numbers, Warszawa 1964.
- Index to sequences related to Olympiads and other Mathematical competitions.
Crossrefs
Programs
-
Haskell
a048691 = product . map (a005408 . fromIntegral) . a124010_row -- Reinhard Zumkeller, Jul 12 2012
-
Mathematica
A048691[n_]:=DivisorSigma[0,n^2] (* Enrique Pérez Herrero, May 30 2010 *) DivisorSigma[0,Range[80]^2] (* Harvey P. Dale, Apr 08 2015 *)
-
MuPAD
numlib::tau (n^2)$ n=1..90 // Zerinvary Lajos, May 13 2008
-
PARI
A048691(n)=prod(i=1,#n=factor(n)[,2],n[i]*2+1) /* or, of course, a(n)=numdiv(n^2) */ \\ M. F. Hasler, Dec 30 2007
-
PARI
for(n=1, 100, print1(direuler(p=2, n, (1 - X^2)/(1 - X)^3)[n], ", ")) \\ Vaclav Kotesovec, Aug 21 2021
-
Sage
[sigma(n**2, 0) for n in range(1, 81)] # Stefano Spezia, Jul 14 2025
Formula
Multiplicative with a(p^e) = 2e+1. - Vladeta Jovovic, Jul 23 2001
Also a(n) = Sum_{d|n} (tau(d)*moebius(n/d)^2), Dirichlet convolution of A000005 and A008966. - Benoit Cloitre, Sep 08 2002
Dirichlet g.f.: (zeta(s))^3/zeta(2s). - R. J. Mathar, Feb 11 2011
a(n) = Sum_{d|n} 2^omega(d). Inverse Mobius transform of A034444. - Enrique Pérez Herrero, Apr 14 2012
G.f.: Sum_{k>=1} 2^omega(k)*x^k/(1 - x^k). - Ilya Gutkovskiy, Mar 10 2018
Sum_{k=1..n} a(k) ~ n*(6/Pi^2)*(log(n)^2/2 + log(n)*(3*gamma - 1) + 1 - 3*gamma + 3*gamma^2 - 3*gamma_1 + (2 - 6*gamma - 2*log(n))*zeta'(2)/zeta(2) + (2*zeta'(2)/zeta(2))^2 - 2*zeta''(2)/zeta(2)), where gamma is Euler's constant (A001620) and gamma_1 is the first Stieltjes constant (A082633). - Amiram Eldar, Jan 26 2023
Extensions
Additional comments from Vladeta Jovovic, Apr 29 2001
Comments