cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A115872 Square array where row n gives all solutions k > 0 to the cross-domain congruence n*k = A048720(A065621(n),k), zero sequence (A000004) if no such solutions exist.

Original entry on oeis.org

1, 2, 1, 3, 2, 3, 4, 3, 6, 1, 5, 4, 7, 2, 7, 6, 5, 12, 3, 14, 3, 7, 6, 14, 4, 15, 6, 7, 8, 7, 15, 5, 28, 7, 14, 1, 9, 8, 24, 6, 30, 12, 15, 2, 15, 10, 9, 28, 7, 31, 14, 28, 3, 30, 7, 11, 10, 30, 8, 56, 15, 30, 4, 31, 14, 3, 12, 11, 31, 9, 60, 24, 31, 5, 60, 15, 6, 3, 13, 12, 48, 10, 62, 28, 56, 6, 62, 28, 12, 6, 5, 14, 13, 51, 11, 63, 30, 60, 7, 63, 30, 15, 7, 10, 7
Offset: 1

Views

Author

Antti Karttunen, Feb 07 2006

Keywords

Comments

Here * stands for ordinary multiplication and X means carryless (GF(2)[X]) multiplication (A048720).
Square array is read by descending antidiagonals, as A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), etc.
Rows at positions 2^k are 1, 2, 3, ..., (A000027). Row 2n is equal to row n.
Numbers on each row give a subset of positions of zeros at the corresponding row of A284270. - Antti Karttunen, May 08 2019

Examples

			Fifteen initial terms of rows 1 - 19 are listed below:
   1:  1,  2,  3,   4,   5,   6,   7,   8,   9,  10,  11,  12,  13,  14,  15, ...
   2:  1,  2,  3,   4,   5,   6,   7,   8,   9,  10,  11,  12,  13,  14,  15, ...
   3:  3,  6,  7,  12,  14,  15,  24,  28,  30,  31,  48,  51,  56,  60,  62, ...
   4:  1,  2,  3,   4,   5,   6,   7,   8,   9,  10,  11,  12,  13,  14,  15, ...
   5:  7, 14, 15,  28,  30,  31,  56,  60,  62,  63, 112, 120, 124, 126, 127, ...
   6:  3,  6,  7,  12,  14,  15,  24,  28,  30,  31,  48,  51,  56,  60,  62, ...
   7:  7, 14, 15,  28,  30,  31,  56,  60,  62,  63, 112, 120, 124, 126, 127, ...
   8:  1,  2,  3,   4,   5,   6,   7,   8,   9,  10,  11,  12,  13,  14,  15, ...
   9: 15, 30, 31,  60,  62,  63, 120, 124, 126, 127, 240, 248, 252, 254, 255, ...
  10:  7, 14, 15,  28,  30,  31,  56,  60,  62,  63, 112, 120, 124, 126, 127, ...
  11:  3,  6, 12,  15,  24,  27,  30,  31,  48,  51,  54,  60,  62,  63,  96, ...
  12:  3,  6,  7,  12,  14,  15,  24,  28,  30,  31,  48,  51,  56,  60,  62, ...
  13:  5, 10, 15,  20,  21,  30,  31,  40,  42,  45,  47,  60,  61,  62,  63, ...
  14:  7, 14, 15,  28,  30,  31,  56,  60,  62,  63, 112, 120, 124, 126, 127, ...
  15: 15, 30, 31,  60,  62,  63, 120, 124, 126, 127, 240, 248, 252, 254, 255, ...
  16:  1,  2,  3,   4,   5,   6,   7,   8,   9,  10,  11,  12,  13,  14,  15, ...
  17: 31, 62, 63, 124, 126, 127, 248, 252, 254, 255, 496, 504, 508, 510, 511, ...
  18: 15, 30, 31,  60,  62,  63, 120, 124, 126, 127, 240, 248, 252, 254, 255, ...
  19:  7, 14, 28,  31,  56,  62,  63, 112, 119, 124, 126, 127, 224, 238, 248, ...
		

Crossrefs

Transpose: A114388. First column: A115873.
Cf. also arrays A277320, A277810, A277820, A284270.
A few odd-positioned rows: row 1: A000027, Row 3: A048717, Row 5: A115770 (? Checked for all values less than 2^20), Row 7: A115770, Row 9: A115801, Row 11: A115803, Row 13: A115772, Row 15: A115801 (? Checked for all values less than 2^20), Row 17: A115809, Row 19: A115874, Row 49: A114384, Row 57: A114386.

Programs

  • Mathematica
    X[a_, b_] := Module[{A, B, C, x},
         A = Reverse@IntegerDigits[a, 2];
         B = Reverse@IntegerDigits[b, 2];
         C = Expand[
            Sum[A[[i]]*x^(i-1), {i, 1, Length[A]}]*
            Sum[B[[i]]*x^(i-1), {i, 1, Length[B]}]];
         PolynomialMod[C, 2] /. x -> 2];
    T[n_, k_] := Module[{x = BitXor[n-1, 2n-1], k0 = k},
         For[i = 1, True, i++, If[n*i == X[x, i],
         If[k0 == 1, Return[i], k0--]]]];
    Table[T[n-k+1, k], {n, 1, 14}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Jan 04 2022 *)
  • PARI
    up_to = 120;
    A048720(b,c) = fromdigits(Vec(Pol(binary(b))*Pol(binary(c)))%2, 2);
    A065621(n) = bitxor(n-1,n+n-1);
    A115872sq(n, k) = { my(x = A065621(n)); for(i=1,oo,if((n*i)==A048720(x,i),if(1==k,return(i),k--))); };
    A115872list(up_to) = { my(v = vector(up_to), i=0); for(a=1,oo, for(col=1,a, i++; if(i > up_to, return(v)); v[i] = A115872sq(col,(a-(col-1))))); (v); };
    v115872 = A115872list(up_to);
    A115872(n) = v115872[n]; \\ (Slow) - Antti Karttunen, May 08 2019

Extensions

Example section added and the data section extended up to n=105 by Antti Karttunen, May 08 2019

A048715 Binary expansion matches (100(0)*)*(0|1|10)?; or, Zeckendorf-like expansion of n using recurrence f(n) = f(n-1) + f(n-3).

Original entry on oeis.org

0, 1, 2, 4, 8, 9, 16, 17, 18, 32, 33, 34, 36, 64, 65, 66, 68, 72, 73, 128, 129, 130, 132, 136, 137, 144, 145, 146, 256, 257, 258, 260, 264, 265, 272, 273, 274, 288, 289, 290, 292, 512, 513, 514, 516, 520, 521, 528, 529, 530, 544, 545, 546, 548, 576, 577, 578, 580
Offset: 0

Views

Author

Antti Karttunen, Mar 30 1999

Keywords

Comments

No more than one 1-bit in each bit triple.
All terms satisfy A048727(n) = 7*n.
Constructed from A000930 in the same way as A003714 is constructed from A000045.
It appears that n is in the sequence if and only if C(7n,n) is odd (cf. A003714). - Benoit Cloitre, Mar 09 2003
The conjecture by Benoit is correct. This is easily proved using the well-known result that the multiplicity with which a prime p divides C(n+m,n) is the number of carries when adding n+m in base p. - Franklin T. Adams-Watters, Oct 06 2009
Appears to be the set of numbers x such that (x AND 5*x) = x and (x OR 3*x)/x = 3. - Gary Detlefs, Jun 08 2024

Crossrefs

Programs

  • Mathematica
    Reap[Do[If[OddQ[Binomial[7n, n]], Sow[n]], {n, 0, 400}]][[2, 1]]
    (* Second program: *)
    filterQ[n_] := With[{bb = IntegerDigits[n, 2]}, !MatchQ[bb, {_, 1, 0, 1, _}|{_, 1, 1, _}]];
    Select[Range[0, 580], filterQ] (* Jean-François Alcover, Dec 31 2020 *)
  • PARI
    is(n)=!bitand(n, 6*n) \\ Charles R Greathouse IV, Oct 03 2016
    
  • Perl
    for my $k (0..580) { print "$k, " if sprintf("%b", $k) =~ m{^(100(0)*)*(0|1|10)?$}; } # Georg Fischer, Jun 26 2021
    
  • Python
    import re
    def ok(n): return re.fullmatch('(100(0)*)*(0|1|10)?', bin(n)[2:]) != None
    print(list(filter(ok, range(581)))) # Michael S. Branicky, Jun 26 2021

Formula

a(0) = 0, a(n) = (2^(invfoo(n)-1))+a(n-foo(invfoo(n))), where foo(n) is foo(n-1) + foo(n-3) (A000930) and invfoo is its "integral" (floored down) inverse.
a(n) XOR 6*a(n) = 7*a(n); 3*a(n) XOR 4*a(n) = 7*a(n); 3*a(n) XOR 5*a(n) = 6*a(n); (conjectures). - Paul D. Hanna, Jan 22 2006
The conjectures can be verified using the Walnut theorem-prover (see links). - Sebastian Karlsson, Dec 31 2022

Extensions

Definition corrected by Georg Fischer, Jun 26 2021

A048719 Binary expansion matches ((0)*0011)*(0*).

Original entry on oeis.org

0, 3, 6, 12, 24, 48, 51, 96, 99, 102, 192, 195, 198, 204, 384, 387, 390, 396, 408, 768, 771, 774, 780, 792, 816, 819, 1536, 1539, 1542, 1548, 1560, 1584, 1587, 1632, 1635, 1638, 3072, 3075, 3078, 3084, 3096
Offset: 0

Views

Author

Antti Karttunen, Mar 30 1999

Keywords

Comments

1-bits occur only in pairs, separated from other such pairs by at least two 0-bits.
All terms satisfy both A048727(n) = 3*n and A048725(n) = 5*n.

Crossrefs

Intersection of A048716 and A048717.

Programs

  • Mathematica
    filterQ[n_] := With[{bb = IntegerDigits[n, 2]}, !MatchQ[bb, {1}|{1, 0, _}|{_, 0, 1}|{_, 0, 1, 0, _}|{_, 1, 1, 1, _}|{_, 1, 0, 1, _}]];
    Select[Range[0, 3096], filterQ] (* Jean-François Alcover, Dec 31 2020 *)
  • PARI
    is(n)=n%3==0 && !bitand(n/3, 14*n/3) \\ Charles R Greathouse IV, Oct 03 2016

Formula

a(n) = 3*A048718(n).

A115772 Integers i such that 13*i = A048720bi(21,i).

Original entry on oeis.org

0, 5, 10, 15, 20, 21, 30, 31, 40, 42, 45, 47, 60, 61, 62, 63, 80, 84, 85, 90, 94, 95, 120, 122, 124, 125, 126, 127, 160, 165, 168, 170, 173, 175, 180, 181, 188, 189, 190, 191, 240, 244, 245, 248, 250, 252, 253, 254, 255, 320, 330, 336, 340, 341, 346, 350, 351
Offset: 0

Views

Author

Antti Karttunen, Jan 30 2006

Keywords

Comments

Here * stands for ordinary multiplication and A048720 is the carryless (GF(2)[X]) multiplication.
a(n) appears to be the set of all n that can be expressed as x OR 4x for the bitwise OR operation. [From Gary Detlefs Dec 20 2010]

Crossrefs

Row 13 of A115872. Cf. A048717, A115767, A115770. Superset of A115774 ? A115776 gives the terms which are not in A115774. A115773 shows this sequence in binary.

A115774 Integers i such that 15*i = A048720bi(23,i).

Original entry on oeis.org

0, 5, 10, 20, 21, 40, 42, 80, 84, 85, 160, 168, 170, 320, 336, 340, 341, 640, 645, 672, 680, 682, 1280, 1285, 1290, 1344, 1360, 1364, 1365, 2560, 2565, 2570, 2580, 2581, 2688, 2693, 2720, 2728, 2730, 5120, 5125, 5130, 5140, 5141, 5160, 5162, 5376
Offset: 0

Views

Author

Antti Karttunen, Jan 30 2006

Keywords

Comments

Here * stands for ordinary multiplication and A048720 is the carryless (GF(2)[X]) multiplication.

Crossrefs

Cf. A048717, A115767, A115770. Subset of A115772 ? A115776 gives the terms of A115772 which do not occur here. Differs from A062052 for the first time at n=18, where A115774(18)=645 while A062052(18)=672. A115775 shows this sequence in binary.

A048733 a(n) = A048730(n)/4.

Original entry on oeis.org

0, 0, 0, 3, 0, 2, 6, 7, 0, 0, 4, 7, 12, 14, 14, 15, 0, 0, 0, 3, 8, 10, 14, 15, 24, 24, 28, 31, 28, 30, 30, 31, 0, 0, 0, 3, 0, 2, 6, 7, 16, 16, 20, 23, 28, 30, 30, 31, 48, 48, 48, 51, 56, 58, 62, 63, 56, 56, 60, 63, 60, 62, 62, 63, 0, 0, 0, 3, 0, 2, 6, 7, 0, 0, 4, 7, 12, 14, 14, 15, 32, 32
Offset: 0

Views

Author

Antti Karttunen

Keywords

Comments

A048715 gives all n for which a(n) = 0, A048717 gives all n for which a(n) = n.

Crossrefs

Programs

Formula

a(n) = ((n*7)-Xmult(n, 7))/4.

A115770 Integers i such that 7*i = A048720bi(11, i), where A048720bi implements the dyadic function given in A048720 (see A001317).

Original entry on oeis.org

0, 7, 14, 15, 28, 30, 31, 56, 60, 62, 63, 112, 120, 124, 126, 127, 224, 240, 248, 252, 254, 255, 448, 455, 480, 496, 504, 508, 510, 511, 896, 903, 910, 911, 960, 967, 992, 1008, 1016, 1020, 1022, 1023, 1792, 1799, 1806, 1807, 1820, 1822, 1823, 1920
Offset: 0

Views

Author

Antti Karttunen, Jan 30 2006

Keywords

Comments

Here * stands for ordinary multiplication and A048720 is the carryless (GF(2)[X]) multiplication.

Crossrefs

Row 7 of A115872 (conjecture: also row 5).
A115771 shows this sequence in binary.

A284555 Positions of zeros in A284557.

Original entry on oeis.org

0, 3, 5, 6, 7, 9, 10, 12, 14, 15, 18, 20, 24, 28, 30, 31, 33, 36, 40, 45, 48, 51, 56, 60, 62, 63, 66, 72, 77, 80, 83, 89, 90, 96, 99, 101, 102, 103, 107, 112, 115, 120, 124, 126, 127, 129, 132, 139, 144, 147, 153, 154, 160, 163, 165, 166, 167, 171, 178, 180, 187, 189, 192, 195, 197, 198, 199, 201, 202, 204, 206, 207
Offset: 0

Views

Author

Antti Karttunen, Apr 10 2017

Keywords

Comments

Indexing starts from zero, because a(0) = 0 is a special case in this list.

Crossrefs

Cf. A048717 (a subsequence).
Showing 1-8 of 8 results.