cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A292272 a(n) = n - A048735(n) = n - (n AND floor(n/2)).

Original entry on oeis.org

0, 1, 2, 2, 4, 5, 4, 4, 8, 9, 10, 10, 8, 9, 8, 8, 16, 17, 18, 18, 20, 21, 20, 20, 16, 17, 18, 18, 16, 17, 16, 16, 32, 33, 34, 34, 36, 37, 36, 36, 40, 41, 42, 42, 40, 41, 40, 40, 32, 33, 34, 34, 36, 37, 36, 36, 32, 33, 34, 34, 32, 33, 32, 32, 64, 65, 66, 66, 68, 69, 68, 68, 72, 73, 74, 74, 72, 73, 72, 72, 80, 81, 82, 82, 84, 85, 84, 84, 80, 81, 82, 82, 80, 81
Offset: 0

Views

Author

Antti Karttunen, Sep 16 2017

Keywords

Comments

In binary expansion of n, change those 1's to 0's that have an 1-bit next to them at their left (more significant) side. Only fibbinary numbers (A003714) occur as terms.

Examples

			From _Kevin Ryde_, Jun 02 2020: (Start)
     n = 1831 = binary 11100100111
  a(n) = 1060 = binary 10000100100   high 1 of each run
(End)
		

Crossrefs

Programs

Formula

a(n) = n - A048735(n) = n - (n AND floor(n/2)) = n XOR (n AND floor(n/2)), where AND is bitwise-AND (A004198) and XOR is bitwise-XOR (A003987).
a(n) = n AND A003188(n).
a(n) = A292382(A005940(1+n)).
A059905(a(n)) = A292371(n).
For all n >= 0, A085357(a(n)) = 1.
a(n) = A213064(n) / 2. - Kevin Ryde, Jun 02 2020
a(n) = n AND NOT floor(n/2). - Chai Wah Wu, Jun 29 2022

A156552 Unary-encoded compressed factorization of natural numbers.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 8, 7, 6, 9, 16, 11, 32, 17, 10, 15, 64, 13, 128, 19, 18, 33, 256, 23, 12, 65, 14, 35, 512, 21, 1024, 31, 34, 129, 20, 27, 2048, 257, 66, 39, 4096, 37, 8192, 67, 22, 513, 16384, 47, 24, 25, 130, 131, 32768, 29, 36, 71, 258, 1025, 65536, 43, 131072, 2049, 38, 63, 68, 69, 262144
Offset: 1

Views

Author

Leonid Broukhis, Feb 09 2009

Keywords

Comments

The primes become the powers of 2 (2 -> 1, 3 -> 2, 5 -> 4, 7 -> 8); the composite numbers are formed by taking the values for the factors in the increasing order, multiplying them by the consecutive powers of 2, and summing. See the Example section.
From Antti Karttunen, Jun 27 2014: (Start)
The odd bisection (containing even terms) halved gives A244153.
The even bisection (containing odd terms), when one is subtracted from each and halved, gives this sequence back.
(End)
Question: Are there any other solutions that would satisfy the recurrence r(1) = 0; and for n > 1, r(n) = Sum_{d|n, d>1} 2^A033265(r(d)), apart from simple variants 2^k * A156552(n)? See also A297112, A297113. - Antti Karttunen, Dec 30 2017

Examples

			For 84 = 2*2*3*7 -> 1*1 + 1*2 + 2*4 + 8*8 =  75.
For 105 = 3*5*7 -> 2*1 + 4*2 + 8*4 = 42.
For 137 = p_33 -> 2^32 = 4294967296.
For 420 = 2*2*3*5*7 -> 1*1 + 1*2 + 2*4 + 4*8 + 8*16 = 171.
For 147 = 3*7*7 = p_2 * p_4 * p_4 -> 2*1 + 8*2 + 8*4 = 50.
		

Crossrefs

One less than A005941.
Inverse permutation: A005940 with starting offset 0 instead of 1.
Cf. also A297106, A297112 (Möbius transform), A297113, A153013, A290308, A300827, A323243, A323244, A323247, A324201, A324812 (n for which a(n) is a square), A324813, A324822, A324823, A324398, A324713, A324815, A324819, A324865, A324866, A324867.

Programs

  • Mathematica
    Table[Floor@ Total@ Flatten@ MapIndexed[#1 2^(#2 - 1) &, Flatten[ Table[2^(PrimePi@ #1 - 1), {#2}] & @@@ FactorInteger@ n]], {n, 67}] (* Michael De Vlieger, Sep 08 2016 *)
  • PARI
    a(n) = {my(f = factor(n), p2 = 1, res = 0); for(i = 1, #f~, p = 1 << (primepi(f[i, 1]) - 1); res += (p * p2 * (2^(f[i, 2]) - 1)); p2 <<= f[i, 2]); res}; \\ David A. Corneth, Mar 08 2019
    
  • PARI
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A156552(n) = if(1==n, 0, if(!(n%2), 1+(2*A156552(n/2)), 2*A156552(A064989(n)))); \\ (based on the given recurrence) - Antti Karttunen, Mar 08 2019
    
  • Perl
    # Program corrected per instructions from Leonid Broukhis. - Antti Karttunen, Jun 26 2014
    # However, it gives correct answers only up to n=136, before corruption by a wrap-around effect.
    # Note that the correct answer for n=137 is A156552(137) = 4294967296.
    $max = $ARGV[0];
    $pow = 0;
    foreach $i (2..$max) {
    @a = split(/ /, `factor $i`);
    shift @a;
    $shift = 0;
    $cur = 0;
    while ($n = int shift @a) {
    $prime{$n} = 1 << $pow++ if !defined($prime{$n});
    $cur |= $prime{$n} << $shift++;
    }
    print "$cur, ";
    }
    print "\n";
    (Scheme, with memoization-macro definec from Antti Karttunen's IntSeq-library, two different implementations)
    (definec (A156552 n) (cond ((= n 1) 0) (else (+ (A000079 (+ -2 (A001222 n) (A061395 n))) (A156552 (A052126 n))))))
    (definec (A156552 n) (cond ((= 1 n) (- n 1)) ((even? n) (+ 1 (* 2 (A156552 (/ n 2))))) (else (* 2 (A156552 (A064989 n))))))
    ;; Antti Karttunen, Jun 26 2014
    
  • Python
    from sympy import primepi, factorint
    def A156552(n): return sum((1<Chai Wah Wu, Mar 10 2023

Formula

From Antti Karttunen, Jun 26 2014: (Start)
a(1) = 0, a(n) = A000079(A001222(n)+A061395(n)-2) + a(A052126(n)).
a(1) = 0, a(2n) = 1+2*a(n), a(2n+1) = 2*a(A064989(2n+1)). [Compare to the entanglement recurrence A243071].
For n >= 0, a(2n+1) = 2*A244153(n+1). [Follows from the latter clause of the above formula.]
a(n) = A005941(n) - 1.
As a composition of related permutations:
a(n) = A003188(A243354(n)).
a(n) = A054429(A243071(n)).
For all n >= 1, A005940(1+a(n)) = n and for all n >= 0, a(A005940(n+1)) = n. [The offset-0 version of A005940 works as an inverse for this permutation.]
This permutations also maps between the partition-lists A112798 and A125106:
A056239(n) = A161511(a(n)). [The sums of parts of each partition (the total sizes).]
A003963(n) = A243499(a(n)). [And also the products of those parts.]
(End)
From Antti Karttunen, Oct 09 2016: (Start)
A161511(a(n)) = A056239(n).
A029837(1+a(n)) = A252464(n). [Binary width of terms.]
A080791(a(n)) = A252735(n). [Number of nonleading 0-bits.]
A000120(a(n)) = A001222(n). [Binary weight.]
For all n >= 2, A001511(a(n)) = A055396(n).
For all n >= 2, A000120(a(n))-1 = A252736(n). [Binary weight minus one.]
A252750(a(n)) = A252748(n).
a(A250246(n)) = A252754(n).
a(A005117(n)) = A277010(n). [Maps squarefree numbers to a permutation of A003714, fibbinary numbers.]
A085357(a(n)) = A008966(n). [Ditto for their characteristic functions.]
For all n >= 0:
a(A276076(n)) = A277012(n).
a(A276086(n)) = A277022(n).
a(A260443(n)) = A277020(n).
(End)
From Antti Karttunen, Dec 30 2017: (Start)
For n > 1, a(n) = Sum_{d|n, d>1} 2^A033265(a(d)). [See comments.]
More linking formulas:
A106737(a(n)) = A000005(n).
A290077(a(n)) = A000010(n).
A069010(a(n)) = A001221(n).
A136277(a(n)) = A181591(n).
A132971(a(n)) = A008683(n).
A106400(a(n)) = A008836(n).
A268411(a(n)) = A092248(n).
A037011(a(n)) = A010052(n) [conjectured, depends on the exact definition of A037011].
A278161(a(n)) = A046951(n).
A001316(a(n)) = A061142(n).
A277561(a(n)) = A034444(n).
A286575(a(n)) = A037445(n).
A246029(a(n)) = A181819(n).
A278159(a(n)) = A124859(n).
A246660(a(n)) = A112624(n).
A246596(a(n)) = A069739(n).
A295896(a(n)) = A053866(n).
A295875(a(n)) = A295297(n).
A284569(a(n)) = A072411(n).
A286574(a(n)) = A064547(n).
A048735(a(n)) = A292380(n).
A292272(a(n)) = A292382(n).
A244154(a(n)) = A048673(n), a(A064216(n)) = A244153(n).
A279344(a(n)) = A279339(n), a(A279338(n)) = A279343(n).
a(A277324(n)) = A277189(n).
A037800(a(n)) = A297155(n).
For n > 1, A033265(a(n)) = 1+A297113(n).
(End)
From Antti Karttunen, Mar 08 2019: (Start)
a(n) = A048675(n) + A323905(n).
a(A324201(n)) = A000396(n), provided there are no odd perfect numbers.
The following sequences are derived from or related to the base-2 expansion of a(n):
A000265(a(n)) = A322993(n).
A002487(a(n)) = A323902(n).
A005187(a(n)) = A323247(n).
A324288(a(n)) = A324116(n).
A323505(a(n)) = A323508(n).
A079559(a(n)) = A323512(n).
A085405(a(n)) = A323239(n).
The following sequences are obtained by applying to a(n) a function that depends on the prime factorization of its argument, which goes "against the grain" because a(n) is the binary code of the factorization of n, which in these cases is then factored again:
A000203(a(n)) = A323243(n).
A033879(a(n)) = A323244(n) = 2*a(n) - A323243(n),
A294898(a(n)) = A323248(n).
A000005(a(n)) = A324105(n).
A000010(a(n)) = A324104(n).
A083254(a(n)) = A324103(n).
A001227(a(n)) = A324117(n).
A000593(a(n)) = A324118(n).
A001221(a(n)) = A324119(n).
A009194(a(n)) = A324396(n).
A318458(a(n)) = A324398(n).
A192895(a(n)) = A324100(n).
A106315(a(n)) = A324051(n).
A010052(a(n)) = A324822(n).
A053866(a(n)) = A324823(n).
A001065(a(n)) = A324865(n) = A323243(n) - a(n),
A318456(a(n)) = A324866(n) = A324865(n) OR a(n),
A318457(a(n)) = A324867(n) = A324865(n) XOR a(n),
A318458(a(n)) = A324398(n) = A324865(n) AND a(n),
A318466(a(n)) = A324819(n) = A323243(n) OR 2*a(n),
A318467(a(n)) = A324713(n) = A323243(n) XOR 2*a(n),
A318468(a(n)) = A324815(n) = A323243(n) AND 2*a(n).
(End)

Extensions

More terms from Antti Karttunen, Jun 28 2014

A213370 a(n) = n AND 2*n, where AND is the bitwise AND operator.

Original entry on oeis.org

0, 0, 0, 2, 0, 0, 4, 6, 0, 0, 0, 2, 8, 8, 12, 14, 0, 0, 0, 2, 0, 0, 4, 6, 16, 16, 16, 18, 24, 24, 28, 30, 0, 0, 0, 2, 0, 0, 4, 6, 0, 0, 0, 2, 8, 8, 12, 14, 32, 32, 32, 34, 32, 32, 36, 38, 48, 48, 48, 50, 56, 56, 60, 62, 0, 0, 0, 2, 0, 0, 4, 6, 0, 0, 0, 2, 8, 8
Offset: 0

Views

Author

Alex Ratushnyak, Jun 14 2012

Keywords

Crossrefs

Cf. A003714: indices of 0's.
Cf. A213540: indices of 2's, indices of 4's divided by 2.

Programs

  • Mathematica
    Table[BitAnd[n, 2n], {n, 0, 63}] (* Alonso del Arte, Jun 19 2012 *)
  • PARI
    a(n) = bitand(n, 2*n); \\ Michel Marcus, Mar 26 2021
  • Python
    for n in range(99):
        print(2*n & n, end=", ")
    

Formula

a(n) = 2 * A048735(n).
a(n) = (1/2)*(A048727(n) XOR A269160(n)) = (n OR 2n) XOR (n XOR 2n). - Antti Karttunen, May 16 2021

A292944 a(n) = A292272(A004754(n)) - 2*A053644(n).

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 2, 2, 0, 1, 2, 2, 4, 5, 4, 4, 0, 1, 2, 2, 4, 5, 4, 4, 8, 9, 10, 10, 8, 9, 8, 8, 0, 1, 2, 2, 4, 5, 4, 4, 8, 9, 10, 10, 8, 9, 8, 8, 16, 17, 18, 18, 20, 21, 20, 20, 16, 17, 18, 18, 16, 17, 16, 16, 0, 1, 2, 2, 4, 5, 4, 4, 8, 9, 10, 10, 8, 9, 8, 8, 16, 17, 18, 18, 20, 21, 20, 20, 16, 17, 18, 18, 16, 17, 16, 16, 32, 33, 34, 34, 36, 37, 36, 36
Offset: 0

Views

Author

Antti Karttunen, Sep 28 2017

Keywords

Comments

In binary expansion (A007088) of n, clear the most significant bit and all those 1-bits that have another 1-bit at their left side, except for the second most significant 1-bit, even in cases where the binary expansion begins as "11...".
Because A292943(n) = a(A243071(n)), the sequence works as a "masking function" where the 1-bits in a(n) (always a subset of the 1-bits in binary expansion of n) indicate which numbers are of the form 6k+3 (odd multiples of three) in binary tree A163511 (or its mirror image tree A005940) on that trajectory which leads from the root of the tree to the node containing A163511(n).

Examples

			For n = 23, 10111 in binary, when we clear (change to zero) the most significant bit (always 1) and also all 1-bits that have 1's at their left side, we are left with 100, which in binary stands for 4, thus a(23) = 4.
For n = 27, 11011 in binary, when we clear the most significant bit, and also all 1-bits that have 1's at their left side except the second most significant, we are left with 1010, which in binary stands for ten, thus a(27) = 10.
		

Crossrefs

Programs

Formula

a(n) = A292272(A004754(n)) - 2*A053644(n).
a(n) = A292943(A163511(n)).
Other identities. For all n >= 0:
a(n) + A292264(n) = A292942(n) + a(n) + A292946(n) = a(n) + A292254(n) + A292256(n) = n.
a(n) = a(n) AND n; a(n) AND A292264(n) = 0, where AND is bitwise-and (A004198).

A048728 Differences between A008585 (multiples of 3) and A048724.

Original entry on oeis.org

0, 0, 0, 4, 0, 0, 8, 12, 0, 0, 0, 4, 16, 16, 24, 28, 0, 0, 0, 4, 0, 0, 8, 12, 32, 32, 32, 36, 48, 48, 56, 60, 0, 0, 0, 4, 0, 0, 8, 12, 0, 0, 0, 4, 16, 16, 24, 28, 64, 64, 64, 68, 64, 64, 72, 76, 96, 96, 96, 100, 112, 112, 120
Offset: 0

Views

Author

Antti Karttunen, Apr 26 1999

Keywords

Crossrefs

Positions of zeros are given by A003714. Cf. A048735, A242400.
Diagonal 3 of A061858.

Programs

Formula

a(n) = n*3 - Xmult(n, 3).

A292264 a(n) = n - A292944(n).

Original entry on oeis.org

0, 1, 2, 2, 4, 4, 4, 5, 8, 8, 8, 9, 8, 8, 10, 11, 16, 16, 16, 17, 16, 16, 18, 19, 16, 16, 16, 17, 20, 20, 22, 23, 32, 32, 32, 33, 32, 32, 34, 35, 32, 32, 32, 33, 36, 36, 38, 39, 32, 32, 32, 33, 32, 32, 34, 35, 40, 40, 40, 41, 44, 44, 46, 47, 64, 64, 64, 65, 64, 64, 66, 67, 64, 64, 64, 65, 68, 68, 70, 71, 64, 64, 64, 65, 64, 64, 66, 67, 72, 72, 72, 73, 76, 76
Offset: 0

Views

Author

Antti Karttunen, Sep 30 2017

Keywords

Comments

Because A292263(n) = a(A243071(n)), the sequence works as a "masking function" where the 1-bits in a(n) (always a subset of the 1-bits in binary expansion of n) indicate which numbers are of the form 6k+1 or 6k+5 in binary tree A163511 (or in its mirror image tree A005940) on that trajectory which leads from the root of the tree to the node containing A163511(n).

Crossrefs

Cf. A048735, A292944, A292272 but also A292254, A292256, A292942, A292946 for similarly constructed sequences.

Programs

Formula

a(n) = n - A292944(n).
a(n) = A292263(A163511(n)).
a(n) = A292942(n) + A292946(n).
a(n) = A292254(n) + A292256(n).

A292380 Base-2 expansion of a(n) encodes the steps where multiples of 4 are encountered when map x -> A252463(x) is iterated down to 1, starting from x=n.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 3, 2, 0, 0, 1, 0, 0, 0, 7, 0, 4, 0, 1, 0, 0, 0, 3, 4, 0, 6, 1, 0, 0, 0, 15, 0, 0, 0, 9, 0, 0, 0, 3, 0, 0, 0, 1, 2, 0, 0, 7, 8, 8, 0, 1, 0, 12, 0, 3, 0, 0, 0, 1, 0, 0, 2, 31, 0, 0, 0, 1, 0, 0, 0, 19, 0, 0, 8, 1, 0, 0, 0, 7, 14, 0, 0, 1, 0, 0, 0, 3, 0, 4, 0, 1, 0, 0, 0, 15, 0, 16, 2, 17, 0, 0, 0, 3, 0
Offset: 1

Views

Author

Antti Karttunen, Sep 15 2017

Keywords

Examples

			For n = 4, the starting value is a multiple of four, after which follows A252463(4) = 2, and A252463(2) = 1, the end point of iteration, and neither 2 nor 1 is a multiple of four, thus a(4) = 1*(2^0) + 0*(2^1) + 0*(2^2) = 1.
For n = 8, the starting value is a multiple of four, after which follows A252463(8) = 4 (also a multiple), continuing as before as 4 -> 2 -> 1, thus a(8) = 1*(2^0) + 1*(2^1) + 0*(2^2) + 0*(2^3) = 3.
For n = 9, the starting value is not a multiple of four, after which follows A252463(9) = 4 (which is), continuing as before as 4 -> 2 -> 1, thus a(9) = 0*(2^0) + 1*(2^1) + 0*(2^2) + 0*(2^3) = 2.
		

Crossrefs

Programs

  • Mathematica
    Table[FromDigits[Reverse@ NestWhileList[Function[k, Which[k == 1, 1, EvenQ@ k, k/2, True, Times @@ Power[Which[# == 1, 1, # == 2, 1, True, NextPrime[#, -1]] & /@ First@ #, Last@ #] &@ Transpose@ FactorInteger@ k]], n, # > 1 &] /. k_ /; IntegerQ@ k :> If[Mod[k, 4] == 0, 1, 0], 2], {n, 105}] (* Michael De Vlieger, Sep 21 2017 *)
  • PARI
    a(n) = my(m=factor(n),k=-1,ret=0); for(i=1,matsize(m)[1], ret += bitneg(0,m[i,2]-1) << (primepi(m[i,1])+k); k+=m[i,2]); ret; \\ Kevin Ryde, Dec 11 2020
  • Python
    from sympy.core.cache import cacheit
    from sympy.ntheory.factor_ import digits
    from sympy import factorint, prevprime
    from operator import mul
    from functools import reduce
    def a292370(n):
        k=digits(n, 4)[1:]
        return 0 if n==0 else int("".join(['1' if i==0 else '0' for i in k]), 2)
    def a064989(n):
        f=factorint(n)
        return 1 if n==1 else reduce(mul, [1 if i==2 else prevprime(i)**f[i] for i in f])
    def a252463(n): return 1 if n==1 else n//2 if n%2==0 else a064989(n)
    @cacheit
    def a292384(n): return 1 if n==1 else 4*a292384(a252463(n)) + n%4
    def a(n): return a292370(a292384(n))
    print([a(n) for n in range(1, 111)]) # Indranil Ghosh, Sep 21 2017
    
  • Scheme
    (define (A292380 n) (A292370 (A292384 n)))
    

Formula

a(n) = A048735(A156552(n)).
a(n) = A292370(A292384(n)).
Other identities. For n >= 1:
a(n) AND A292382(n) = 0, where AND is a bitwise-AND (A004198).
a(n) + A292382(n) = A156552(n).
A000120(a(n)) + A000120(A292382(n)) = A001222(n).
A000035(a(n)) = A121262(n).

A292373 A binary encoding of 3-digits in base-4 representation of n.

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 2, 2, 2, 3, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 2, 2, 2, 3, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 2, 2, 2, 3, 4, 4, 4, 5, 4, 4, 4, 5, 4, 4, 4, 5, 6, 6, 6, 7, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 2, 2, 2, 3, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 2, 2, 2, 3, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 2, 2, 2, 3, 4, 4, 4, 5, 4, 4, 4, 5, 4
Offset: 0

Views

Author

Antti Karttunen, Sep 15 2017

Keywords

Examples

			   n      a(n)     base-4(n)  binary(a(n))
                  A007090(n)  A007088(a(n))
  --      ----    ----------  ------------
   1        0          1           0
   2        0          2           0
   3        1          3           1
   4        0         10           0
   5        0         11           0
   6        0         12           0
   7        1         13           1
   8        0         20           0
   9        0         21           0
  10        0         22           0
  11        1         23           1
  12        2         30          10
  13        2         31          10
  14        2         32          10
  15        3         33          11
  16        0        100           0
  17        0        101           0
  18        0        102           0
  19        1        103           1
		

Crossrefs

Programs

  • Python
    def A292373(n): return int(bin(n&n>>1)[:1:-2][::-1],2) # Chai Wah Wu, Jun 30 2022

Formula

a(n) = A059905(A048735(n)) = A059906(A213370(n)).
For all n >= 0, A000120(a(n)) = A160383(n).

A126306 a(n) = number of double-rises (UU-subsequences) in the n-th Dyck path encoded by A014486(n).

Original entry on oeis.org

0, 0, 0, 1, 0, 1, 1, 1, 2, 0, 1, 1, 1, 2, 1, 2, 1, 1, 2, 2, 2, 2, 3, 0, 1, 1, 1, 2, 1, 2, 1, 1, 2, 2, 2, 2, 3, 1, 2, 2, 2, 3, 1, 2, 1, 1, 2, 2, 2, 2, 3, 2, 3, 2, 2, 3, 2, 2, 2, 3, 3, 3, 3, 3, 4, 0, 1, 1, 1, 2, 1, 2, 1, 1, 2, 2, 2, 2, 3, 1, 2, 2, 2, 3, 1, 2, 1, 1, 2, 2, 2, 2, 3, 2, 3, 2, 2, 3, 2, 2, 2, 3
Offset: 0

Views

Author

Antti Karttunen, Jan 02 2007

Keywords

Examples

			A014486(20) = 228 (11100100 in binary), encodes the following Dyck path:
    /\
   /..\/\
  /......\
and there is one rising (left-hand side) slope with length 3 and one with length 1, so in the first slope, consisting of 3 U-steps, there are two cases with two consecutive U-steps (overlapping is allowed), thus a(20)=2.
		

Crossrefs

Programs

  • Python
    def ok(n):
        if n==0: return True
        B=bin(n)[2:] if n!=0 else '0'
        s=0
        for b in B:
            s+=1 if b=='1' else -1
            if s<0: return False
        return s==0
    def a014081(n): return sum(((n>>i)&3==3) for i in range(len(bin(n)[2:]) - 1))
    print([a014081(n) for n in range(4001) if ok(n)]) # Indranil Ghosh, Jun 13 2017

Formula

a(n) = A014081(A014486(n)).
a(n) = A000120(A048735(A014486(n))).
a(A125976(n)) = A057514(n)-1, for all n >= 1.

A229762 a(n) = (n XOR floor(n/2)) AND floor(n/2), where AND and XOR are bitwise logical operators.

Original entry on oeis.org

0, 0, 1, 0, 2, 2, 1, 0, 4, 4, 5, 4, 2, 2, 1, 0, 8, 8, 9, 8, 10, 10, 9, 8, 4, 4, 5, 4, 2, 2, 1, 0, 16, 16, 17, 16, 18, 18, 17, 16, 20, 20, 21, 20, 18, 18, 17, 16, 8, 8, 9, 8, 10, 10, 9, 8, 4, 4, 5, 4, 2, 2, 1, 0, 32, 32, 33, 32, 34, 34, 33, 32, 36, 36, 37, 36, 34, 34, 33
Offset: 0

Views

Author

Alex Ratushnyak, Sep 28 2013

Keywords

Comments

a(n) has a 01 bit pair in place of each 10 bit pair in n, and everywhere else 0 bits. Or equivalently a(n) has a 1-bit immediately below each run of 1's in n, but excluding a run ending at the least significant bit since below that is below the radix point. - Kevin Ryde, Feb 27 2021

Examples

			From _Kevin Ryde_, Feb 27 2021: (Start)
     n = 7267 = binary 1110001100011
  a(n) =  528 = binary   01000010000   1-bit below each run
(End)
		

Crossrefs

Cf. A003188 (n XOR floor(n/2)).
Cf. A048724 (n XOR (n*2)).
Cf. A048735 (n AND floor(n/2)).
Cf. A213370 (n AND (n*2)).
Cf. A213064 (n XOR (n*2) AND (n*2), 1-bit above each run).
Cf. A229763 ((2*n) XOR n AND n, low 1-bit each run).

Programs

  • Haskell
    import Data.Bits ((.&.), xor, shiftR)
    a229762 n = (n `xor` shiftR n 1) .&. shiftR n 1 :: Int
    -- Reinhard Zumkeller, Oct 10 2013
    
  • PARI
    a(n) = bitnegimply(n>>1,n); \\ Kevin Ryde, Feb 27 2021
  • Python
    for n in range(333): print (n ^ (n>>1)) & (n>>1),
    
  • Python
    def A229762(n): return ~n& n>>1 # Chai Wah Wu, Jun 29 2022
    

Formula

a(n) = (n XOR floor(n/2)) AND floor(n/2) = (n AND floor(n/2)) XOR floor(n/2).
a(n) = floor(n/2) AND NOT n. - Chai Wah Wu, Jun 29 2022
Showing 1-10 of 13 results. Next