cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A003714 Fibbinary numbers: if n = F(i1) + F(i2) + ... + F(ik) is the Zeckendorf representation of n (i.e., write n in Fibonacci number system) then a(n) = 2^(i1 - 2) + 2^(i2 - 2) + ... + 2^(ik - 2). Also numbers whose binary representation contains no two adjacent 1's.

Original entry on oeis.org

0, 1, 2, 4, 5, 8, 9, 10, 16, 17, 18, 20, 21, 32, 33, 34, 36, 37, 40, 41, 42, 64, 65, 66, 68, 69, 72, 73, 74, 80, 81, 82, 84, 85, 128, 129, 130, 132, 133, 136, 137, 138, 144, 145, 146, 148, 149, 160, 161, 162, 164, 165, 168, 169, 170, 256, 257, 258, 260, 261, 264
Offset: 0

Views

Author

Keywords

Comments

The name "Fibbinary" is due to Marc LeBrun.
"... integers whose binary representation contains no consecutive ones and noticed that the number of such numbers with n bits was fibonacci(n)". [posting to sci.math by Bob Jenkins (bob_jenkins(AT)burtleburtle.net), Jul 17 2002]
From Benoit Cloitre, Mar 08 2003: (Start)
A number m is in the sequence if and only if C(3m, m) (or equally, C(3m, 2m)) is odd.
a(n) == A003849(n) (mod 2). (End)
Numbers m such that m XOR 2*m = 3*m. - Reinhard Zumkeller, May 03 2005. [This implies that A003188(2*a(n)) = 3*a(n) holds for all n.]
Numbers whose base-2 representation contains no two adjacent ones. For example, m = 17 = 10001_2 belongs to the sequence, but m = 19 = 10011_2 does not. - Ctibor O. Zizka, May 13 2008
m is in the sequence if and only if the central Stirling number of the second kind S(2*m, m) = A007820(m) is odd. - O-Yeat Chan (math(AT)oyeat.com), Sep 03 2009
A000120(3*a(n)) = 2*A000120(a(n)); A002450 is a subsequence.
Every nonnegative integer can be expressed as the sum of two terms of this sequence. - Franklin T. Adams-Watters, Jun 11 2011
Subsequence of A213526. - Arkadiusz Wesolowski, Jun 20 2012
This is also the union of A215024 and A215025 - see the Comment in A014417. - N. J. A. Sloane, Aug 10 2012
The binary representation of each term m contains no two adjacent 1's, so we have (m XOR 2m XOR 3m) = 0, and thus a two-player Nim game with three heaps of (m, 2m, 3m) stones is a losing configuration for the first player. - V. Raman, Sep 17 2012
Positions of zeros in A014081. - John Keith, Mar 07 2022
These numbers are similar to Fibternary numbers A003726, Tribbinary numbers A060140 and Tribternary numbers. This sequence is a subsequence of Fibternary numbers A003726. The number of Fibbinary numbers less than any power of two is a Fibonacci number. We can generate this sequence recursively: start with 0 and 1; then, if x is in the sequence add 2x and 4x+1 to the sequence. The Fibbinary numbers have the property that the n-th Fibbinary number is even if the n-th term of the Fibonacci word is a. Respectively, the n-th Fibbinary number is odd (of the form 4x+1) if the n-th term of the Fibonacci word is b. Every number has a Fibbinary multiple. - Tanya Khovanova and PRIMES STEP Senior, Aug 30 2022
This is the ordered set S of numbers defined recursively by: 0 is in S; if x is in S, then 2*x and 4*x + 1 are in S. See Kimberling (2006) Example 3, in references below. - Harry Richman, Jan 31 2024

Examples

			From _Joerg Arndt_, Jun 11 2011: (Start)
In the following, dots are used for zeros in the binary representation:
  a(n)  binary(a(n))  n
    0:    .......     0
    1:    ......1     1
    2:    .....1.     2
    4:    ....1..     3
    5:    ....1.1     4
    8:    ...1...     5
    9:    ...1..1     6
   10:    ...1.1.     7
   16:    ..1....     8
   17:    ..1...1     9
   18:    ..1..1.    10
   20:    ..1.1..    11
   21:    ..1.1.1    12
   32:    .1.....    13
   33:    .1....1    14
   34:    .1...1.    15
   36:    .1..1..    16
   37:    .1..1.1    17
   40:    .1.1...    18
   41:    .1.1..1    19
   42:    .1.1.1.    20
   64:    1......    21
   65:    1.....1    22
(End)
		

References

  • Donald E. Knuth, The Art of Computer Programming: Fundamental Algorithms, Vol. 1, 2nd ed., Addison-Wesley, 1973, pp. 85, 493.

Crossrefs

A007088(a(n)) = A014417(n) (same sequence in binary). Complement: A004780. Char. function: A085357. Even terms: A022340, odd terms: A022341. First difference: A129761.
Other sequences based on similar restrictions on binary expansion: A003726 & A278038, A003754, A048715, A048718, A107907, A107909.
3*a(n) is in A001969.
Cf. A014081 (count 11 bits).

Programs

  • Haskell
    import Data.Set (Set, singleton, insert, deleteFindMin)
    a003714 n = a003714_list !! n
    a003714_list = 0 : f (singleton 1) where
       f :: Set Integer -> [Integer]
       f s = m : (f $ insert (4*m + 1) $ insert (2*m) s')
             where (m, s') = deleteFindMin s
    -- Reinhard Zumkeller, Jun 03 2012, Feb 07 2012
    
  • Maple
    A003714 := proc(n)
        option remember;
        if n < 3 then
            n ;
        else
            2^(A072649(n)-1) + procname(n-combinat[fibonacci](1+A072649(n))) ;
        end if;
    end proc:
    seq(A003714(n),n=0..10) ;
    # To produce a table giving n, a(n) (base 10), a(n) (base 2) - from N. J. A. Sloane, Sep 30 2018
    # binary: binary representation of n, in human order
    binary:=proc(n) local t1,L;
    if n<0 then ERROR("n must be nonnegative"); fi;
    if n=0 then return([0]); fi;
    t1:=convert(n,base,2); L:=nops(t1);
    [seq(t1[L+1-i],i=1..L)];
    end;
    for n from 0 to 100 do t1:=A003714(n); lprint(n, t1, binary(t1)); od:
  • Mathematica
    fibBin[n_Integer] := Block[{k = Ceiling[Log[GoldenRatio, n Sqrt[5]]], t = n, fr = {}}, While[k > 1, If[t >= Fibonacci[k], AppendTo[fr, 1]; t = t - Fibonacci[k], AppendTo[fr, 0]]; k--]; FromDigits[fr, 2]]; Table[fibBin[n], {n, 0, 61}] (* Robert G. Wilson v, Sep 18 2004 *)
    Select[Range[0, 270], ! MemberQ[Partition[IntegerDigits[#, 2], 2, 1], {1, 1}] &] (* Harvey P. Dale, Jul 17 2011 *)
    Select[Range[256], BitAnd[#, 2 #] == 0 &] (* Alonso del Arte, Jun 18 2012 *)
    With[{r = Range[10^5]}, Pick[r, BitAnd[r, 2 r], 0]] (* Eric W. Weisstein, Aug 18 2017 *)
    Select[Range[0, 299], SequenceCount[IntegerDigits[#, 2], {1, 1}] == 0 &] (* Requires Mathematica version 10 or later. -- Harvey P. Dale, Dec 06 2018 *)
  • PARI
    msb(n)=my(k=1); while(k<=n, k<<=1); k>>1
    for(n=1,1e4,k=bitand(n,n<<1);if(k,n=bitor(n,msb(k)-1),print1(n", "))) \\ Charles R Greathouse IV, Jun 15 2011
    
  • PARI
    select( is_A003714(n)=!bitand(n,n>>1), [0..266])
    {(next_A003714(n,t)=while(t=bitand(n+=1,n<<1), n=bitor(n,1<A003714(t)) \\ M. F. Hasler, Nov 30 2021
    
  • Python
    for n in range(300):
        if 2*n & n == 0:
            print(n, end=",") # Alex Ratushnyak, Jun 21 2012
    
  • Python
    def A003714(n):
        tlist, s = [1,2], 0
        while tlist[-1]+tlist[-2] <= n:
            tlist.append(tlist[-1]+tlist[-2])
        for d in tlist[::-1]:
            s *= 2
            if d <= n:
                s += 1
                n -= d
        return s # Chai Wah Wu, Jun 14 2018
    
  • Python
    def fibbinary():
        x = 0
        while True:
            yield x
            y = ~(x >> 1)
            x = (x - y) & y # Falk Hüffner, Oct 23 2021
    (C++)
    /* start with x=0, then repeatedly call x=next_fibrep(x): */
    ulong next_fibrep(ulong x)
    {
        // 2 examples:         //  ex. 1             //  ex.2
        //                     // x == [*]0 010101   // x == [*]0 01010
        ulong y = x | (x>>1);  // y == [*]? 011111   // y == [*]? 01111
        ulong z = y + 1;       // z == [*]? 100000   // z == [*]? 10000
        z = z & -z;            // z == [0]0 100000   // z == [0]0 10000
        x ^= z;                // x == [*]0 110101   // x == [*]0 11010
        x &= ~(z-1);           // x == [*]0 100000   // x == [*]0 10000
        return x;
    }
    /* Joerg Arndt, Jun 22 2012 */
    
  • Scala
    (0 to 255).filter(n => (n & 2 * n) == 0) // Alonso del Arte, Apr 12 2020
    (C#)
    public static bool IsFibbinaryNum(this int n) => ((n & (n >> 1)) == 0) ? true : false; // Frank Hollstein, Jul 07 2021

Formula

No two adjacent 1's in binary expansion.
Let f(x) := Sum_{n >= 0} x^Fibbinary(n). (This is the generating function of the characteristic function of this sequence.) Then f satisfies the functional equation f(x) = x*f(x^4) + f(x^2).
a(0) = 0, a(1) = 1, a(2) = 2, a(n) = 2^(A072649(n) - 1) + a(n - A000045(1 + A072649(n))). - Antti Karttunen
It appears that this sequence gives m such that A082759(3*m) is odd; or, probably equivalently, m such that A037011(3*m) = 1. - Benoit Cloitre, Jun 20 2003
If m is in the sequence then so are 2*m and 4*m + 1. - Henry Bottomley, Jan 11 2005
A116361(a(n)) <= 1. - Reinhard Zumkeller, Feb 04 2006
A085357(a(n)) = 1; A179821(a(n)) = a(n). - Reinhard Zumkeller, Jul 31 2010
a(n)/n^k is bounded (but does not tend to a limit), where k = 1.44... = A104287. - Charles R Greathouse IV, Sep 19 2012
a(n) = a(A193564(n+1))*2^(A003849(n) + 1) + A003849(n) for n > 0. - Daniel Starodubtsev, Aug 05 2021
There are Fibonacci(n+1) terms with up to n bits in this sequence. - Charles R Greathouse IV, Oct 22 2021
Sum_{n>=1} 1/a(n) = 3.704711752910469457886531055976801955909489488376627037756627135425780134020... (calculated using Baillie and Schmelzer's kempnerSums.nb, see Links). - Amiram Eldar, Feb 12 2022

Extensions

Edited by Antti Karttunen, Feb 21 2006
Cross reference to A007820 added (into O-Y.C. comment) by Jason Kimberley, Sep 14 2009
Typo corrected by Jeffrey Shallit, Sep 26 2014

A048724 Write n and 2n in binary and add them mod 2.

Original entry on oeis.org

0, 3, 6, 5, 12, 15, 10, 9, 24, 27, 30, 29, 20, 23, 18, 17, 48, 51, 54, 53, 60, 63, 58, 57, 40, 43, 46, 45, 36, 39, 34, 33, 96, 99, 102, 101, 108, 111, 106, 105, 120, 123, 126, 125, 116, 119, 114, 113, 80, 83, 86, 85, 92, 95, 90, 89, 72, 75, 78, 77, 68, 71, 66, 65, 192
Offset: 0

Views

Author

Antti Karttunen, Apr 26 1999

Keywords

Comments

Reversing binary representation of -n. Converting sum of powers of 2 in binary representation of a(n) to alternating sum gives -n. Note that the alternation is applied only to the nonzero bits and does not depend on the exponent of two. All integers have a unique reversing binary representation (see cited exercise for proof). Complement of A065621. - Marc LeBrun, Nov 07 2001
A permutation of the "evil" numbers A001969. - Marc LeBrun, Nov 07 2001
A048725(n) = a(a(n)). - Reinhard Zumkeller, Nov 12 2004

Examples

			12 = 1100 in binary, 24=11000 and their sum is 10100=20, so a(12)=20.
a(4) = 12 = + 8 + 4 -> - 8 + 4 = -4.
		

References

  • D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, 1969, Vol. 2, p. 178, (exercise 4.1. Nr. 27)

Crossrefs

Bisection of A003188 (even part).
See also A065620, A065621.
Cf. A242399.

Programs

Formula

a(n) = Xmult(n, 3) (or n XOR (n<<1)).
a(n) = A065621(-n).
a(2n) = 2a(n), a(2n+1) = 2a(n) + 2(-1)^n + 1.
G.f. 1/(1-x) * sum(k>=0, 2^k*(3t-t^3)/(1+t)/(1+t^2), t=x^2^k). - Ralf Stephan, Sep 08 2003
a(n) = sum(k=0, n, (1-(-1)^round(+n/2^k))/2*2^k). - Benoit Cloitre, Apr 27 2005
a(n) = A001969(A003188(n)). - Philippe Deléham, Apr 29 2005
a(n) = A106409(2*n) for n>0. - Reinhard Zumkeller, May 02 2005
a(n) = A142149(2*n). - Reinhard Zumkeller, Jul 15 2008

A004780 Binary expansion contains 2 adjacent 1's.

Original entry on oeis.org

3, 6, 7, 11, 12, 13, 14, 15, 19, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 35, 38, 39, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 67, 70, 71, 75, 76, 77, 78, 79, 83, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100
Offset: 1

Views

Author

Keywords

Comments

Complement of A003714. It appears that n is in the sequence if and only if C(3n,n) is even. - Benoit Cloitre, Mar 09 2003
Since the binary representation of these numbers contains two adjacent 1's, so for these values of n, we will have (n XOR 2n XOR 3n) != 0, and thus a two player Nim game with three heaps of (n, 2n, 3n) stones will be a winning configuration for the first player. - V. Raman, Sep 17 2012
A048728(a(n)) > 0. - Reinhard Zumkeller, May 13 2014
The set of numbers x such that Or(x,3*x) <> 3*x. - Gary Detlefs, Jun 04 2024

Crossrefs

Complement: A003714.
Subsequences (apart from any initial zero-term): A001196, A004755, A004767, A033428, A277335.

Programs

  • Haskell
    a004780 n = a004780_list !! (n-1)
    a004780_list = filter ((> 1) . a048728) [1..]
    -- Reinhard Zumkeller, May 13 2014
    
  • Maple
    q:= n-> verify([1$2], Bits[Split](n), 'sublist'):
    select(q, [$0..200])[];  # Alois P. Heinz, Oct 22 2021
  • PARI
    is(n)=bitand(n,n+n)>0 \\ Charles R Greathouse IV, Sep 19 2012
    
  • Python
    from itertools import count, islice
    def A004780_gen(startvalue=1): # generator of terms >= startvalue
        return filter(lambda n:n&(n<<1), count(max(startvalue,1)))
    A004780_list = list(islice(A004780_gen(),30)) # Chai Wah Wu, Jul 13 2022

Formula

a(n) ~ n. - Charles R Greathouse IV, Sep 19 2012

Extensions

Offset corrected by Reinhard Zumkeller, Jul 28 2010

A048735 a(n) = (n AND floor(n/2)), where AND is bitwise and-operator (A004198).

Original entry on oeis.org

0, 0, 0, 1, 0, 0, 2, 3, 0, 0, 0, 1, 4, 4, 6, 7, 0, 0, 0, 1, 0, 0, 2, 3, 8, 8, 8, 9, 12, 12, 14, 15, 0, 0, 0, 1, 0, 0, 2, 3, 0, 0, 0, 1, 4, 4, 6, 7, 16, 16, 16, 17, 16, 16, 18, 19, 24, 24, 24, 25, 28, 28, 30, 31, 0, 0, 0, 1, 0, 0, 2, 3, 0, 0, 0, 1, 4, 4, 6, 7, 0
Offset: 0

Views

Author

Antti Karttunen, Apr 26 1999

Keywords

Comments

To prove that (n AND floor(n/2)) = (3n-(n XOR 2n))/4 (= A048728(n)/4), we first multiply both sides by 4, to get 2*(n AND 2n) = (3n - (n XOR 2n)) and then rearrange terms: 3n = (n XOR 2n) + 2*(n AND 2n), which fits perfectly to the identity A+B = (A XOR B) + 2*(A AND B) (given by Schroeppel in HAKMEM link).
The number of 1's through 4*2^n appears to yield A000045(n+1). - Ben Burns, Jun 12 2017

Crossrefs

Cf. A003714 (positions of zeros), A003188, A050600.

Programs

  • Maple
    seq(Bits:-And(n,floor(n/2)), n=0..200); # Robert Israel, Feb 29 2016
  • Mathematica
    Table[BitAnd[n, Floor[n/2]], {n, 0, 127}] (* T. D. Noe, Aug 13 2012 *)
  • PARI
    a(n) = bitand(n, n\2); \\ Michel Marcus, Feb 29 2016
    
  • Python
    def a(n): return n&int(n/2) # Indranil Ghosh, Jun 13 2017

Formula

a(n) = A048728(n)/4. (This was the original definition. AND-formula found Jan 01 2007).

Extensions

New formula and more terms added by Antti Karttunen, Jan 01 2007

A061858 Differences between the ordinary multiplication table A004247 and the carryless multiplication table for GF(2)[X] polynomials A048720, i.e., the effect of the carry bits in binary multiplication.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 8, 0, 0, 0, 0, 0, 0, 12, 0, 8, 0, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 16, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 24, 24, 0, 0, 0
Offset: 0

Views

Author

Antti Karttunen, May 11 2001

Keywords

Examples

			From _Peter Munn_, Jan 28 2021: (Start)
The top left 12 X 12 corner of the table:
      |  0   1   2   3   4   5   6   7   8   9  10  11
------+------------------------------------------------
   0  |  0   0   0   0   0   0   0   0   0   0   0   0
   1  |  0   0   0   0   0   0   0   0   0   0   0   0
   2  |  0   0   0   0   0   0   0   0   0   0   0   0
   3  |  0   0   0   4   0   0   8  12   0   0   0   4
   4  |  0   0   0   0   0   0   0   0   0   0   0   0
   5  |  0   0   0   0   0   8   0   8   0   0  16  16
   6  |  0   0   0   8   0   0  16  24   0   0   0   8
   7  |  0   0   0  12   0   8  24  28   0   0  16  28
   8  |  0   0   0   0   0   0   0   0   0   0   0   0
   9  |  0   0   0   0   0   0   0   0   0  16   0  16
  10  |  0   0   0   0   0  16   0  16   0   0  32  32
  11  |  0   0   0   4   0  16   8  28   0  16  32  52
(End)
		

Crossrefs

"Zoomed in" variant: A061859.
Rows/columns 3, 5 and 7 are given by A048728, A048729, A048730.
Main diagonal divided by 4: A213673.
Numbers that generate no carries when multiplied in binary by 11_2: A003714, by 101_2: A048716, by 1001_2: A115845, by 10001_2: A115847, by 100001_2: A114086.
Other sequences related to the presence/absence of a carry in binary multiplication: A116361, A235034, A235040, A236378, A266195, A289726.

Formula

a(n) = A004247(n) - A048720(n).

A242400 Differences between A008586 (multiples of 4) and A242399.

Original entry on oeis.org

0, 0, 0, 0, 0, 9, 0, 9, 9, 0, 0, 0, 0, 0, 9, 27, 36, 36, 0, 0, 0, 27, 27, 36, 27, 36, 36, 0, 0, 0, 0, 0, 9, 0, 9, 9, 0, 0, 0, 0, 0, 9, 27, 36, 36, 81, 81, 81, 108, 108, 117, 108, 117, 117, 0, 0, 0, 0, 0, 9, 0, 9, 9, 81, 81, 81, 81, 81, 90, 108, 117, 117, 81
Offset: 0

Views

Author

Reinhard Zumkeller, May 13 2014

Keywords

Comments

a(n) = A008586(n) - A242399(n);
a(m) = 0 iff m is a term of A242407;
a(A242407(n)) = 0; a(A242408(n)) > 0.

Crossrefs

Cf. A048728.

Programs

  • Haskell
    a242400 n = a008586 n - a242399 n

A061859 Differences between the ordinary multiplication table A004247 and Xmult table A048720, computed for {3..n} * {3..n}.

Original entry on oeis.org

4, 0, 0, 0, 0, 0, 8, 0, 0, 8, 12, 0, 8, 0, 12, 0, 0, 0, 0, 0, 0, 0, 0, 8, 16, 8, 0, 0, 0, 0, 0, 24, 24, 0, 0, 0, 4, 0, 0, 0, 28, 0, 0, 0, 4, 16, 0, 16, 0, 0, 0, 0, 16, 0, 16, 16, 0, 16, 0, 0, 0, 0, 0, 16, 0, 16, 24, 0, 0, 8, 16, 0, 0, 16, 8, 0, 0, 24, 28, 0, 8, 32, 28, 0, 16, 0, 28, 32, 8, 0, 28
Offset: 0

Views

Author

Antti Karttunen, May 11 2001

Keywords

Crossrefs

Cf. "Zoomed out" variant: A061858, trinv given at A054425. The first, third and fifth diagonals are given by A048728-A048730.

Programs

  • Maple
    [seq(diff_mult_Xmult_table3(j),j=0..119)]; diff_mult_Xmult_table3 := (n) -> (mult_table3(n) - Xmult_table3(n));
    mult_table3 := (n) -> floor(evalf(((((trinv(n)-1)*(((1/2)*trinv(n))+1))-n)+3) * (3+(n-((trinv(n)*(trinv(n)-1))/2))) ));
    Xmult_table3 := (n) -> Xmult( ((((trinv(n)-1)*(((1/2)*trinv(n))+1))-n)+3),(3+(n-((trinv(n)*(trinv(n)-1))/2))) );
Showing 1-7 of 7 results.