A048775 Number of (partially defined) monotone maps from intervals of 1..n to 1..n.
1, 7, 31, 121, 456, 1709, 6427, 24301, 92368, 352705, 1352066, 5200287, 20058286, 77558745, 300540179, 1166803093, 4537567632, 17672631881, 68923264390, 269128937199, 1052049481838, 4116715363777, 16123801841526, 63205303218851, 247959266474026, 973469712824029
Offset: 1
Examples
a(2) = 7 because there are two maps with domain {1}, two with domain {2} and three maps with domain {1,2}. When n=2, we are looking at the full subcategory of Delta spanned by [0],[1]. There is one monotone map [0]->[0], one monotone map [1]->[0], two monotone maps [0]->[1], and three monotone maps [1]->[1] (namely (0,0), (0,1), (1,1)). The total is 1+1+2+3=7. - _David Spivak_, Dec 12 2013
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
- David Applegate and N. J. A. Sloane, The Gift Exchange Problem, arXiv:0907.0513 [math.CO], 2009.
- Wikipedia, Simplex category
Programs
-
GAP
List([1..26],n->Binomial(2*n+1,n+1)-(n+1)); # Muniru A Asiru, Oct 09 2018
-
Magma
[Binomial(2*n+1, n+1)-(n+1): n in [1..30]]; // Vincenzo Librandi, Oct 10 2018
-
Maple
seq(coeff(series(factorial(n)*(exp(2*x)*(BesselI(0,2*x)+BesselI(1,2*x))-exp(x)*(1+x)),x,n+1), x, n), n = 1 .. 26); # Muniru A Asiru, Oct 09 2018
-
Mathematica
Table[Binomial[2n+1,n+1]-(n+1),{n,30}] (* Harvey P. Dale, Feb 08 2013 *) From Stefano Spezia, Oct 09 2018: (Start) a[n_]:=(1/2)*Sum[Sum[(i+j) !/(i !*j !),{i,1,n}],{j,1,n}]; Array[a, 50] (* or *) CoefficientList[Series[((1/(2*x))*(1/Sqrt[1-4*x]-1) - 1/(1-x)^2)/x, {x, 0, 50}], x] (* or *) CoefficientList[Series[(Exp[2*x]*(BesselI[0,2*x] + BesselI[1,2*x]) - Exp[x]*(1 + x))/x, {x, 0, 50}], x]*Table[(k+1) !, {k, 0, 50}] (End)
-
PARI
Vec((1/(2*x))*(1/sqrt(1-4*x)-1) - 1/(1-x)^2 + O(x^15)) \\ Stefano Spezia, Oct 09 2018
Formula
a(n) = binomial(2*n+1, n+1)-(n+1) = A001700(n)-n-1.
a(n) = (1/2)*Sum[Sum[(i+j)!/(i!*j!),{i,1,n}],{j,1,n}]. - Alexander Adamchuk, Jul 04 2006; corrected by N. J. A. Sloane, Jan 30 2009
G.f.: (1/(2*x))*(1/sqrt(1-4*x)-1) - 1/(1-x)^2. - N. J. A. Sloane, Feb 02 2009
a(n) = Sum_{k=0..n} (n-k+1)*C(n+k+1,n) = [x^n](1+x)^n*F(-n-2,-n-1;1;x/(1+x)). - Paul Barry, Oct 01 2010
Conjecture: (n+1)*a(n) + (-7*n-2)*a(n-1) + 3*(5*n-3)*a(n-2) + (-13*n+20)*a(n-3) + 2*(2*n-5)*a(n-4) = 0. - R. J. Mathar, Nov 30 2012
a(n) = (1/2) * Sum_{k=1..n} Sum_{i=1..n} C(k+i,i). - Wesley Ivan Hurt, Sep 19 2017
E.g.f.: exp(2*x)*(BesselI(0,2*x) + BesselI(1,2*x)) - exp(x)*(1 + x). - Ilya Gutkovskiy, Sep 19 2017
Extensions
More terms from N. J. A. Sloane, Dec 15 2008
Comments