A002297
Numerator of (2/Pi)*Integral_{0..inf} (sin x / x)^n dx.
Original entry on oeis.org
1, 1, 3, 2, 115, 11, 5887, 151, 259723, 15619, 381773117, 655177, 20646903199, 27085381, 467168310097, 2330931341, 75920439315929441, 12157712239, 5278968781483042969, 37307713155613, 9093099984535515162569, 339781108897078469, 168702835448329388944396777
Offset: 1
1, 1, 3/4, 2/3, 115/192, 11/20, ...
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n=1..100
- A. H. R. Grimsey, On the accumulation of chance effects and the Gaussian frequency distribution, Phil. Mag., 36 (1945), 294-295.
- R. G. Medhurst and J. H. Roberts, Evaluation of the integral I_n(b) = (2/Pi)*Integral_{0..inf} (sin x / x)^n cos (bx) dx, Math. Comp., 19 (1965), 113-117.
-
a[n_] := Numerator[ (2/Pi)*Integrate[ (Sin[x]/x)^n, {x, 0, Infinity}] ]; Table[ a[n], {n, 1, 21}] (* Jean-François Alcover, Dec 19 2011 *)
Numerator@Table[Sum[(-1)^k (n-2k)^(n-1) Binomial[n, k], {k, 0, n/2}]/((n-1)! 2^(n-1)), {n, 1, 30}] (* Vladimir Reshetnikov, Sep 02 2016 *)
-
a(n) = numerator((n/2^(n-1)) * sum(r=0, n/2, (-1)^r*(n-2*r)^(n-1)/(r!*(n-r)!))); \\ Michel Marcus, Oct 02 2013
A049331
Denominator of (1/Pi)*Integral_{0..oo} (sin x / x)^n dx.
Original entry on oeis.org
2, 2, 8, 3, 384, 40, 23040, 630, 1146880, 72576, 1857945600, 3326400, 108999475200, 148262400, 2645053931520, 13621608000, 457065319366656000, 75277762560, 33566877054287216640, 243290200817664
Offset: 1
1/2, 1/2, 3/8, 1/3, 115/384, 11/40, ...
- Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Section 1.4.3, p. 22.
- T. D. Noe, Table of n, a(n) for n = 1..100
- Ulrich Abel and Vitaliy Kushnirevych, Sinc integrals revisited, Mathematische Semesterberichte (2023).
- Iskander Aliev, Siegel's Lemma and Sum-Distinct Sets, arXiv:math/0503115 [math.NT] (2005) and Discrete and Computational Geometry, Volume 39, Numbers 1-3 / March, 2008. [Added by _N. J. A. Sloane_, Jul 09 2009]
- Iskander Aliev and Martin Henk, Minkowski's successive minima in convex and discrete geometry, arXiv:2304.00120 [math.MG], 2023.
- Robert Baillie, David Borwein, and Jonathan M. Borwein, Surprising Sinc Sums and Integrals, Amer. Math. Monthly, 115 (2008), 888-901.
- A. H. R. Grimsey, On the accumulation of chance effects and the Gaussian frequency distribution, Phil. Mag., 36 (1945), 294-295.
- R. G. Medhurst and J. H. Roberts, Evaluation of the integral I_n(b) = (2/Pi)*Integral_{0..inf} (sin x / x)^n cos (bx) dx, Math. Comp., 19 (1965), 113-117.
- Jan W. H. Swanepoel, A Short Simple Probabilistic Proof of a Well Known Identity and the Derivation of Related New Identities Involving the Bernoulli Numbers and the Euler Numbers, Integers (2025) Vol. 25, Art. No. A50. See p. 1.
- Eric Weisstein's World of Mathematics, Sinc Function.
-
[Denominator( (1/(2^n*Factorial(n-1)))*(&+[(-1)^j*Binomial(n,j)*(n-2*j)^(n-1): j in [0..Floor(n/2)]]) ): n in [1..25]]; // G. C. Greubel, Apr 01 2022
-
Table[ 1/Pi*Integrate[Sinc[x]^n, {x, 0, Infinity}] // Denominator, {n, 1, 20}] (* Jean-François Alcover, Dec 02 2013 *)
Denominator@Table[Sum[(-1)^k (n-2k)^(n-1) Binomial[n, k], {k, 0, n/2}]/((n-1)! 2^n), {n, 1, 30}] (* Vladimir Reshetnikov, Sep 02 2016 *)
-
[denominator( (1/(2^n*factorial(n-1)))*sum((-1)^j*binomial(n,j)*(n-2*j)^(n-1) for j in (0..(n//2))) ) for n in (1..25)] # G. C. Greubel, Apr 01 2022
A099765
a(n) = (1/Pi)*(2^n/n)*(n-1)!*Integral_{t>=0} (sin(t)/t)^n dt.
Original entry on oeis.org
1, 1, 2, 8, 46, 352, 3364, 38656, 519446, 7996928, 138826588, 2683604992, 57176039628, 1331300646912, 33636118326984, 916559498182656, 26795449170328038, 836606220759859200, 27784046218331805100
Offset: 1
-
[(1/n)*(&+[(-1)^j*Binomial(n,j)*(n-2*j)^(n-1): j in [0..Floor(n/2)]]): n in [1..25]]; // G. C. Greubel, Apr 01 2022
-
Table[1/n Sum[(-1)^k Binomial[n,k](n-2k)^(n-1),{k,0,Floor[n/2]}], {n,20}] (* Harvey P. Dale, Oct 21 2011 *)
-
a(n)=(1/n)*sum(k=0,floor(n/2),(-1)^k*binomial(n,k)*(n-2*k)^(n-1))
-
[(1/n)*sum((-1)^j*binomial(n,j)*(n-2*j)^(n-1) for j in (0..(n//2))) for n in (1..25)] # G. C. Greubel, Apr 01 2022
A176365
Numerator of (1/Pi)*Integral_{0..infinity} (sin x / x)^(2*n) dx.
Original entry on oeis.org
1, 1, 11, 151, 15619, 655177, 27085381, 2330931341, 12157712239, 37307713155613, 339781108897078469, 75489558096433522049, 11482547005345338463969, 3607856726470666022715979, 18497593486903125823791655511, 520679973964725199436393399689
Offset: 1
a(2) = 1 because Integral_{0..infinity} (sin(x)/x)^4 dx = (1/3)*Pi.
a(3) = 11 because Integral_{0..infinity} (sin(x)/x)^6 dx = (11/40)*Pi.
a(4) = 151 because Integral_{0..infinity} (sin(x)/x)^8 dx = (151/630)*Pi.
a(5) = 15619 because Integral_{0..infinity} (sin(x)/x)^10 dx = (15619/72576)*Pi.
-
A176365 := proc(n) sin(x)^(2*n)/x^(2*n) ; int(%,x=0..infinity)/Pi ; numer(%) ; end proc: # R. J. Mathar, Apr 24 2010
-
a[n_]:= (1/Pi)*Integrate[(Sin[x]/x)^(2n), {x, 0, Infinity}]//Numerator; Array[a, 16] (* Jean-François Alcover, Nov 25 2017 *)
5 terms added and broken URL corrected by
R. J. Mathar, Apr 24 2010
A261398
Integer coefficients arising from a formula for Sum_{m>=1} sin(Pi*m/3)^2/m^2.
Original entry on oeis.org
1, 2, 6, 32, 230, 2112, 23548, 309248, 4675014, 79969280, 1527092468, 32203259904, 743288515164, 18638209056768, 504541774904760, 14664951970922496, 455522635895576646, 15058911973677465600, 527896878148304296900, 19559986314930028544000, 763820398700983273655796, 31353195811771939838492672
Offset: 1
- Vincenzo Librandi, Table of n, a(n) for n = 1..200
- R. Butler, On the Evaluation of Integral_{x=0..oo} (sin(t))^m/t^m dt by the Trapezoidal Rule, The American Mathematical Monthly, vol. 67, no. 6, 1960, pp. 566-69.
- J. W. H. Swanepoel, On a generalization of a theorem by Euler, Journal of Number Theory 149 (2015) 46-56.
-
[(&+[(-1)^j*Binomial(n,j)*(n-2*j)^(n-1): j in [0..Floor(n/2)]]): n in [1..25]]; // G. C. Greubel, Apr 01 2022
-
A261398 := proc(n)
add( (-1)^i*binomial(n,i)*(n-2*i)^(n-1),i=0..floor((n-1)/2)) ;
end proc:
seq(A261398(n),n=1..25) ; # R. J. Mathar, Aug 19 2015
-
Table[Sum[(-1)^k (n-2k)^(n-1) Binomial[n, k], {k, 0, n/2}], {n, 1, 20}] (* Vladimir Reshetnikov, Sep 05 2016 *)
-
a(n) = sum(i=0, (n-1)\2, (-1)^i*binomial(n,i)*(n-2*i)^(n-1)); \\ Michel Marcus, Sep 05 2016
-
[sum((-1)^j*binomial(n,j)*(n-2*j)^(n-1) for j in (0..(n//2))) for n in (1..25)] # G. C. Greubel, Apr 01 2022
Showing 1-5 of 5 results.
Comments