A050146 a(n) = T(n,n), array T as in A050143.
1, 1, 4, 18, 88, 450, 2364, 12642, 68464, 374274, 2060980, 11414898, 63521352, 354870594, 1989102444, 11180805570, 63001648608, 355761664002, 2012724468324, 11406058224594, 64734486343480, 367891005738690, 2093292414443164, 11923933134635298, 67990160422313808
Offset: 0
Keywords
Examples
G.f. = 1 + x + 4*x^2 + 18*x^3 + 88*x^4 + 450*x^5 + 2364*x^6 + 12642*x^7 + ...
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- A. Laradji and A. Umar, A. Combinatorial results for semigroups of order-preserving partial transformations, Journal of Algebra, 278 (2004), 342-359.
- A. Laradji and A. Umar, Combinatorial results for semigroups of order-decreasing partial transformations, J. Integer Seq., 7 (2004), 04.3.8.
- Huyile Liang, Yanni Pei, and Yi Wang, Analytic combinatorics of coordination numbers of cubic lattices, arXiv:2302.11856 [math.CO], 2023. See p. 4.
- Emanuele Munarini, Combinatorial properties of the antichains of a garland, Integers, 9 (2009), 353-374.
Crossrefs
Programs
-
Haskell
a050146 n = if n == 0 then 1 else a035607 (2 * n - 2) (n - 1) -- Reinhard Zumkeller, Nov 05 2013, Jul 20 2013
-
Mathematica
Flatten[{1,RecurrenceTable[{(n-3)*(n-1)*a[n-2]-3*(n-2)*(2*n-3)*a[n-1]+(n-2)*(n-1)*a[n]==0,a[1]==1,a[2]==4},a,{n,20}]}] (* Vaclav Kotesovec, Oct 08 2012 *) a[ n_] := If[ n == 0, 1, Sum[ Binomial[n, k] Binomial[n + k - 2, k - 1], {k, n}]]; (* Michael Somos, Nov 25 2016 *) a[ n_] := If[ n == 0, 1, n Hypergeometric2F1[1 - n, n, 2, -1]]; (* Michael Somos, Nov 25 2016 *)
-
Maxima
taylor(-(x^4+sqrt(x^2-6*x+1)*(x^3-5*x^2+5*x+1)-8*x^3+16*x^2-6*x+1)/(x^3+sqrt(x^2-6*x+1)*(x^2-4*x-1)-7*x^2+7*x-1),x,0,10); /* Vladimir Kruchinin, Nov 25 2016 */
-
PARI
a(n)=if(n==0, 1, sum(k=1,n, binomial(n, k)*binomial(n+k-2, k-1)) ); \\ Joerg Arndt, May 04 2013
-
Sage
A050146 = lambda n : n*hypergeometric([1-n, n], [2], -1) if n>0 else 1 [round(A050146(n).n(100)) for n in (0..24)] # Peter Luschny, Sep 17 2014
Formula
From Vladeta Jovovic, Mar 31 2004: (Start)
Coefficient of x^(n-1) in expansion of ((1+x)/(1-x))^n, n > 0.
a(n) = Sum_{k=1..n} binomial(n, k)*binomial(n+k-2, k-1), n > 0. (End)
D-finite with recurrence (n-1)*(n-2)*a(n) = 3*(2*n-3)*(n-2)*a(n-1) - (n-1)*(n-3)*a(n-2) for n > 2. - Vladeta Jovovic, Jul 16 2004
a(n+1) = Jacobi_P(n, 1, -1, 3); a(n+1) = Sum{k=0..n} C(n+1, k)*C(n-1, n-k)*2^k. - Paul Barry, Jan 23 2006
a(n) = n*A006318(n-1) - Abdullahi Umar, Aug 25 2008
a(n) ~ sqrt(3*sqrt(2)-4)*(3+2*sqrt(2))^n/(2*sqrt(Pi*n)). - Vaclav Kotesovec, Oct 08 2012
a(n+1) = A035607(2*n,n). - Reinhard Zumkeller, Jul 20 2013
a(n) = n*hypergeometric([1-n, n], [2], -1) for n >= 1. - Peter Luschny, Sep 17 2014
O.g.f.: -(x^4 + sqrt(x^2 - 6*x + 1)*(x^3 - 5*x^2 + 5*x + 1) - 8*x^3 + 16*x^2 - 6*x + 1)/(x^3 + sqrt(x^2 - 6*x + 1)*(x^2 - 4*x - 1)- 7*x^2 + 7*x - 1). - Vladimir Kruchinin, Nov 25 2016
0 = a(n)*(a(n+1) - 18*a(n+2) + 65*a(n+3) - 12*a(n+4)) + a(n+1)*(54*a(n+2) - 408*a(n+3) + 81*a(n+4)) + a(n+2)*(72*a(n+2) + 334*a(n+3) - 90*a(n+4)) + a(n+3)*(-24*a(n+3) + 9*a(n+4)) for all integer n if a(0) = 0 and a(n) = -2*A050151(-n) for n < 0. - Michael Somos, Nov 25 2016
O.g.f: (2 - x + x*(3 - x)/sqrt(x^2 - 6*x + 1))/2. - Petros Hadjicostas, Feb 14 2021
Comments