cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A035607 Table a(d,m) of number of points of L1 norm m in cubic lattice Z^d, read by antidiagonals (d >= 1, m >= 0).

Original entry on oeis.org

1, 1, 2, 1, 4, 2, 1, 6, 8, 2, 1, 8, 18, 12, 2, 1, 10, 32, 38, 16, 2, 1, 12, 50, 88, 66, 20, 2, 1, 14, 72, 170, 192, 102, 24, 2, 1, 16, 98, 292, 450, 360, 146, 28, 2, 1, 18, 128, 462, 912, 1002, 608, 198, 32, 2, 1, 20, 162, 688, 1666, 2364, 1970, 952, 258, 36, 2, 1, 22, 200, 978, 2816
Offset: 0

Views

Author

Keywords

Comments

Table also gives coordination sequences of same lattices.
Rows sums are given by A001333. Rising and falling diagonals are the tribonacci numbers A000213, A001590. - Paul Barry, Feb 13 2003
a(d,m) also gives the number of ways to choose m squares from a 2 X (d-1) grid so that no two squares in the selection are (horizontally or vertically) adjacent. - Jacob A. Siehler, May 13 2006
Mirror image of triangle A113413. - Philippe Deléham, Oct 15 2006
The Ca1 sums lead to A126116 and the Ca2 sums lead to A070550, see A180662 for the definitions of these triangle sums. - Johannes W. Meijer, Aug 05 2011
A035607 is jointly generated with the Delannoy triangle A008288 as an array of coefficients of polynomials v(n,x): initially, u(1,x) = v(1,x) = 1; for n > 1, u(n,x) = x*u(n-1,x) + v(n-1) and v(n,x) = 2*x*u(n-1,x) + v(n-1,x). See the Mathematica section. - Clark Kimberling, Mar 05 2012
Also, the polynomial v(n,x) above is x + (x + 1)*f(n-1,x), where f(0,x) = 1. - Clark Kimberling, Oct 24 2014
Rows also give the coefficients of the independence polynomial of the n-ladder graph. - Eric W. Weisstein, Dec 29 2017
Considering both sequences as square arrays (offset by one row), the rows of A035607 are the first differences of the rows of A008288, and the rows of A008288 are the partial sums of the rows of A035607. - Shel Kaphan, Feb 23 2023
Considering only points with nonnegative coordinates, the number of points at L1 distance = m in d dimensions is the same as the number of ways of putting m indistinguishable balls into d distinguishable urns, binomial(m+d-1, d-1). This is one facet of the cross-polytope. Allowing for + and - coordinates, there are binomial(d,i)*2^i facets containing points with up to i nonzero coordinates. Eliminating double counting of points with any coordinates = 0, there are Sum_{i=1..d} (-1)^(d-i)*binomial(m+i-1,i-1)*binomial(d,i)*2^i points at distance m in d dimensions. One may avoid the alternating sum by using binomial(m-1,i-1) to count only the points per facet with exactly i nonzero coordinates, avoiding any double counting, but the result is the same. - Shel Kaphan, Mar 04 2023

Examples

			From _Clark Kimberling_, Oct 24 2014: (Start)
As a triangle of coefficients in polynomials v(n,x) in Comments, the first 6 rows are
  1
  1   2
  1   4   2
  1   6   8   2
  1   8  18  12   2
  1  10  32  38  16   2
  ... (End)
From _Shel Kaphan_, Mar 04 2023: (Start)
For d=3, m=4:
There are binomial(3,1)*2^1 = 6 facets (vertices) of binomial(4+1-1,1-1) = 1 point with <= one nonzero coordinate.
There are binomial(3,2)*2^2 = 12 facets (edges) of binomial(4+2-1,2-1) = 5 points with <= two nonzero coordinates.
There are binomial(3,3)*2^3 = 8 facets (faces) of binomial(4+3-1,3-1) = 15 points with <= three nonzero coordinates.
a(3,4) = 8*15 - 12*5 + 6*1 = 120 - 60 + 6 = 66. (End)
		

Crossrefs

Other versions: A113413, A119800, A122542, A266213.
Cf. A008288, which has g.f. 1/(1-x-x*y-x^2*y).
Cf. A078057 (row sums), A050146 (central terms).
Cf. A050146.

Programs

  • Haskell
    a035607 n k = a035607_tabl !! n !! k
    a035607_row n = a035607_tabl !! n
    a035607_tabl = map fst $ iterate
       (\(us, vs) -> (vs, zipWith (+) ([0] ++ us ++ [0]) $
                          zipWith (+) ([0] ++ vs) (vs ++ [0]))) ([1], [1, 2])
    -- Reinhard Zumkeller, Jul 20 2013
    
  • Maple
    A035607 := proc(d,m) local j: add(binomial(floor((d-1+j)/2),d-m-1)*binomial(d-m-1, floor((d-1-j)/2)),j=0..d-1) end: seq(seq(A035607(d,m),m=0..d-1),d=1..11); # d=dimension, m=norm # Johannes W. Meijer, Aug 05 2011
  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := x*u[n - 1, x] + v[n - 1, x];
    v[n_, x_] := 2 x*u[n - 1, x] + v[n - 1, x];
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]    (* A008288 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]    (* A035607 *)
    (* Clark Kimberling, Mar 09 2012 *)
    Reverse /@ CoefficientList[CoefficientList[Series[(1 + x)/(1 - x - x y - x^2 y), {x, 0, 10}], x], y] // Flatten (* Eric W. Weisstein, Dec 29 2017 *)
  • PARI
    T(n, k) = if (k==0, 1, sum(i=0, k-1, binomial(n-k,i+1)*binomial(k-1,i)*2^(i+1)));
    tabl(nn) = for (n=1, nn, for (k=0, n-1, print1(T(n, k), ", ")); print); \\ as a triangle; Michel Marcus, Feb 27 2018
  • Sage
    def A035607_row(n):
        @cached_function
        def prec(n, k):
            if k==n: return 1
            if k==0: return 0
            return prec(n-1,k-1)+2*sum(prec(n-i,k-1) for i in (2..n-k+1))
        return [prec(n, n-k) for k in (0..n-1)]
    for n in (1..10): print(A035607_row(n)) # Peter Luschny, Mar 16 2016
    

Formula

From Johannes W. Meijer, Aug 05 2011: (Start)
f(d,m) = Sum_{j=0..d-1} binomial(floor((d-1+j)/2), d-m-1)*binomial(d-m-1, floor((d-1-j)/2)), d >= 1 and 0 <= m <= d-1.
f(d,m) = f(d-1,m-1) + f(d-1,m) + f(d-2,m-1) (d >= 3 and 1 <= m <= d-1) with f(d,0) = 1 (d >= 1) and f(d,d-1) = 2 (d>=2). (End)
From Roger Cuculière, Apr 10 2006: (Start)
The generating function G(x,y) of this double sequence is the sum of a(n,p)*x^n*y^p, n=1..oo, p=0..oo, which is G(x,y) = x*(1+y)/(1-x-y-x*y).
The horizontal generating function H_n(y), which generates the rows of the table: (1, 2, 2, 2, 2, ...), (1, 4, 8, 12, 16, ...), (1, 6, 18, 38, 66, ...), is the sum of a(n,p)*y^p, p=0..oo, for each fixed n. This is H_n(y) = ((1+y)^n)/((1-y)^n).
The vertical generating function V_p(x), which generates the columns of the table: (1, 1, 1, 1, 1, ...), (2, 4, 6, 8, 10, ...), (2, 8, 18, 32, 50, ...), is the sum of a(n,p)*x^n, n=1..oo, for each fixed p. This is V_p(x) = 2*((1+x)^(p-1))/((1-x)^(p+1)) for p >= 1 and V_0(x) = x/(1-x). (End)
G.f.: (1+x)/(1-x-x*y-x^2*y). - Vladeta Jovovic, Apr 02 2002 (But see previous lines!)
T(2*n,n) = A050146(n+1). - Reinhard Zumkeller, Jul 20 2013
Seen as a triangle read by rows: T(n,0) = 1, for n > 1: T(n,n-1) = 2, T(n,k) = T(n-1,k-1) + T(n-1,k) + T(n-2,k-1), 0 < k < n. - Reinhard Zumkeller, Jul 20 2013
Seen as a triangle T(n,k) with 0 <= k < n read by rows: T(n,0)=1 for n > 0 and T(n,k) = Sum_{i=0..k-1} binomial(n-k,i+1)*binomial(k-1,i)*2^(i+1) for k > 0. - Werner Schulte, Feb 22 2018
With p >= 1 and q >= 0, as a square array a(p,q) = T(p+q-1,q) = 2*p*Hypergeometric2F1[1-p, 1-q, 2, 2] for q >= 1. Consequently, a(p,q) = a(q,p)*p/q. - Shel Kaphan, Feb 14 2023
For n >= 1, T(2*n,n) = A002003(n), T(3*n,2*n) = A103885(n) and T(4*n,3*n) = A333715(n). - Peter Bala, Jun 15 2023

Extensions

More terms from David W. Wilson
Maple program corrected and information added by Johannes W. Meijer, Aug 05 2011

A119800 Array of coordination sequences for cubic lattices (rows) and of numbers of L1 forms in cubic lattices (columns) (array read by antidiagonals).

Original entry on oeis.org

4, 8, 6, 12, 18, 8, 16, 38, 32, 10, 20, 66, 88, 50, 12, 24, 102, 192, 170, 72, 14, 28, 146, 360, 450, 292, 98, 16, 32, 198, 608, 1002, 912, 462, 128, 18, 36, 258, 952, 1970, 2364, 1666, 688, 162, 20, 40, 326, 1408, 3530, 5336, 4942, 2816, 978, 200, 22
Offset: 1

Views

Author

Thomas Wieder, Jul 30 2006, Aug 06 2006

Keywords

Examples

			The second row of the table is: 6, 18, 38, 66, 102, 146, 198, 258, 326, ... = A005899 = number of points on surface of octahedron.
The third column of the table is: 12, 38, 88, 170, 292, 462, 688, 978, 1340, ... = A035597 = number of points of L1 norm 3 in cubic lattice Z^n.
The first rows are: A008574, A005899, A008412, A008413, A008414, A008415, A008416, A008418, A008420.
The first columns are: A005843, A001105, A035597, A035598, A035599, A035600, A035601, A035602, A035603.
The main diagonal seems to be A050146.
Square array A(n,k) begins:
   4,   8,   12,   16,    20,    24,     28,     32,      36, ...
   6,  18,   38,   66,   102,   146,    198,    258,     326, ...
   8,  32,   88,  192,   360,   608,    952,   1408,    1992, ...
  10,  50,  170,  450,  1002,  1970,   3530,   5890,    9290, ...
  12,  72,  292,  912,  2364,  5336,  10836,  20256,   35436, ...
  14,  98,  462, 1666,  4942, 12642,  28814,  59906,  115598, ...
  16, 128,  688, 2816,  9424, 27008,  68464, 157184,  332688, ...
  18, 162,  978, 4482, 16722, 53154, 148626, 374274,  864146, ...
  20, 200, 1340, 6800, 28004, 97880, 299660, 822560, 2060980, ...
		

Crossrefs

Programs

  • Maple
    A:= proc(m, n)  option remember;
          `if`(n=0, 1, `if`(m=0, 2, A(m, n-1) +A(m-1, n) +A(m-1, n-1)))
        end:
    seq(seq(A(n, 1+d-n), n=1..d), d=1..10);  # Alois P. Heinz, Apr 21 2012
  • Mathematica
    A[m_, n_] := A[m, n] = If[n == 0, 1, If[m == 0, 2, A[m, n-1] + A[m-1, n] + A[m-1, n-1]]]; Table[Table[A[n, 1+d-n], {n, 1, d}], {d, 1, 10}] // Flatten (* Jean-François Alcover, Mar 09 2015, after Alois P. Heinz *)

Formula

A(m,n) = A(m,n-1) + A(m-1,n) + A(m-1,n-1), A(m,0)=1, A(0,0)=1, A(0,n)=2.

Extensions

Offset and typos corrected by Alois P. Heinz, Apr 21 2012

A055807 Triangle T read by rows: T(i,j) = R(i-j,j), where R(i,0) = 1 for i >= 0, R(0,j) = 0 for j >= 1, and R(i,j) = Sum_{h=0..i-1, k=0..j} R(h,k) for i >= 1 and j >= 1.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 7, 4, 1, 0, 1, 15, 12, 5, 1, 0, 1, 31, 32, 18, 6, 1, 0, 1, 63, 80, 56, 25, 7, 1, 0, 1, 127, 192, 160, 88, 33, 8, 1, 0, 1, 255, 448, 432, 280, 129, 42, 9, 1, 0, 1, 511, 1024, 1120, 832, 450, 180, 52, 10, 1, 0, 1, 1023
Offset: 0

Views

Author

Clark Kimberling, May 28 2000

Keywords

Comments

Formatted as a triangular array, it is [1, 0, 1, 1, 0, 0, 0, 0, 0, ...] DELTA [0, 1, 0, -1, 1, 0, 0, 0, 0, ...] where DELTA is the operator defined in A084938. - Philippe Deléham, Nov 05 2006
The square array (R(n,k): n,k >= 0) referred to in the name of the sequence is actually A050143. - Petros Hadjicostas, Feb 13 2021

Examples

			Triangle T(n,k) (with rows n >= 0 and columns k = 0..n) begins:
  1;
  1,   0;
  1,   1,   0;
  1,   3,   1,   0;
  1,   7,   4,   1,   0;
  1,  15,  12,   5,   1,   0;
  1,  31,  32,  18,   6,   1,  0;
  1,  63,  80,  56,  25,   7,  1, 0;
  1, 127, 192, 160,  88,  33,  8, 1, 0;
  1, 255, 448, 432, 280, 129, 42, 9, 1, 0;
  ...
Florez et al. (2019) give the triangle in this form:
    1,    0,    0,   0,   0,   0,  0,  0, 0, ...
    3,    1,    0,   0,   0,   0,  0,  0, 0, ...
    7,    4,    1,   0,   0,   0,  0,  0, 0, ...
   15,   12,    5,   1,   0,   0,  0,  0, 0, ...
   31,   32,   18,   6,   1,   0,  0,  0, 0, ...
   63,   80,   56,  25,   7,   1,  0,  0, 0, ...
  127,  192,  160,  88,  33,   8,  1,  0, 0, ...
  255,  448,  432, 280, 129,  42,  9,  1, 0, ...
  511, 1024, 1120, 832, 450, 180, 52, 10, 1, ...
  ...
		

Crossrefs

Rows sums: A001519 (odd-indexed Fibonacci numbers).

Programs

  • GAP
    T:= function(i,j)
        if j=0 then return 1;
        elif i=0 then return 0;
        else return Sum([0..i-1], h-> Sum([0..j], m-> T(h,m) ));
        fi; end;
    Flat(List([0..12], n-> List([0..n], k-> T(n-k,k) ))); # G. C. Greubel, Jan 23 2020
  • Magma
    function T(i,j)
      if j eq 0 then return 1;
      elif i eq 0 then return 0;
      else return (&+[(&+[T(h,m): m in [0..j]]): h in [0..i-1]]);
      end if; return T; end function;
    [T(n-k,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Jan 23 2020
    
  • Maple
    T:= proc(i, j) option remember;
          if j=0 then 1
        elif i=0 then 0
        else add(add(T(h,m), m=0..j), h=0..i-1)
          fi; end:
    seq(seq(T(n-k, k), k=0..n), n=0..12); # G. C. Greubel, Jan 23 2020
  • Mathematica
    T[i_, j_]:= T[i, j]= If[j==0, 1, If[i==0, 0, Sum[T[h, m], {h,0,i-1}, {m,0,j}]]]; Table[T[n-k, k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Jan 23 2020 *)
  • PARI
    T(i,j) = if(j==0, 1, if(i==0, 0, sum(h=0,i-1, sum(m=0,j, T(h,m) ))));
    for(n=0,12, for(k=0, n, print1(T(n-k,k), ", "))) \\ G. C. Greubel, Jan 23 2020
    
  • Sage
    @CachedFunction
    def T(i, j):
        if j==0: return 1
        elif i==0: return 0
        else: return sum(sum(T(h,m) for m in (0..j)) for h in (0..i-1))
    [[T(n-k, k) for k in (0..n)] for n in (0..12)] # G. C. Greubel, Jan 23 2020
    

Formula

T(2*n,n) = A050146(n).
G.f.: (1-2*x)*(1-x*y)/((1-x)*(1-x*y-2*x+x^2*y)). - R. J. Mathar, Aug 11 2015
From Petros Hadjicostas, Feb 13 2021: (Start)
T(n,k) = A050143(n-k, k) for 0 <= k <= n.
T(n,k) = (n-k)*hypergeom([-n + k + 1, k], [2], -1) = Sum_{s=1..n-k} binomial(n-k,s)*binomial(s+k-2,k-1) for 1 <= k <= n.
T(n,k) = 2*T(n-1,k) + T(n-1,k-1) - T(n-2,k-1) for 2 <= k <= n-1 with initial conditions T(n,0) = 1 for n >= 0, T(n,n) = 0 for n >= 1, and T(n,1) = 2^(n-1) - 1 for n >= 2. (End)

A050151 a(n) = T(n,n+2), array T as in A050143.

Original entry on oeis.org

0, 1, 6, 33, 180, 985, 5418, 29953, 166344, 927441, 5188590, 29113953, 163786428, 923511849, 5217709266, 29532022785, 167417253648, 950453221153, 5402869685334, 30748881013153, 175186193208900, 999071379620601, 5702750629608186, 32578618535692033, 186257611786501080
Offset: 0

Views

Author

Keywords

Comments

Form an array having the first column all 1's and the first row the squares: m(n,1) = 1 and m(1,n) = n^2 for n = 1, 2, 3, .... Define interior terms m(i,j) = m(i,j-1) + m(i-1,j-1) + m(i-1,j). Then the terms on the main diagonal are the terms of this sequence. - J. M. Bergot, Nov 16 2012
Form an array with first row m(1,j)=1 and first column m(n,1) = n*(n-1)+1 for n=1,2,3... The remaining terms m(i,j) = m(i,j-1) + m(i-1,j-1) + m(i-1,j); Sum_{n=1,2,3,...} T(n,n) = a(n). The first five terms in the main diagonal are 1, 5, 27, 147, 805 with partial sums 1, 6, 33, 180, 985. - J. M. Bergot, Jan 26 2013

Examples

			G.f. = x + 6*x^2 + 33*x^3 + 180*x^4 + 985*x^5 + 5418*x^6 + 29953*x^7 + ...
		

Crossrefs

Programs

  • Maple
    A050151 := n -> (-1)^n*n*hypergeom([-n, n+1], [2], 2):
    seq(simplify(A050151(n)), n=0..21); # Peter Luschny, Nov 09 2017
  • Mathematica
    CoefficientList[Series[((1 - 3*x)/(1 - 6*x + x^2)^(1/2) - 1)/(4*x), {x, 0, 100}], x] (* Vincenzo Librandi, Feb 02 2013 *)
    a[ n_] := n / 2 Hypergeometric2F1[1 + n, -n, 2, -1]; (* Michael Somos, Nov 25 2016 *)
  • PARI
    a(n) = n*hypergeom([-n, n+1], [2], 2)\/(-1)^n \\ Charles R Greathouse IV, Oct 23 2023

Formula

From Vladeta Jovovic, Mar 28 2004: (Start)
G.f.: ((1-3*x)/sqrt(1-6*x+x^2)-1)/(4*x).
E.g.f.: exp(3*x)*BesselI(1, 2*sqrt(2)*x)/sqrt(2). (End)
a(n) = Sum_{k=0..n} binomial(n, k)*binomial(n+1, k+1)/2. - Paul Barry, Sep 20 2004
a(n) = n*R(n)/2, where R(n)=A006318(n) are the large Schroeder numbers. - Emeric Deutsch, Jul 14 2005
From David Callan, Aug 16 2006: (Start)
a(n) = Sum_{k=0..n} 2^(k-1)*binomial(n, k)*binomial(n, k-1).
a(n) = (CentralDelannoy(n+1) - 3*CentralDelannoy(n))/4 where CentralDelannoy(n) is A001850. (End)
a(n) = (1/Pi)*Integral_{x=3-2*sqrt(2)..3+2*sqrt(2)} x^n*(x-3)/(4*sqrt(-x^2+6x-1)). - Paul Barry, Sep 16 2006
D-finite with recurrence (n+1)*a(n) - 9*n*a(n-1) + (19*n-27)*a(n-2) + 3*(-n+2)*a(n-3) = 0. - R. J. Mathar, Nov 16 2012
a(n) ~ sqrt(3*sqrt(2)-4) * (1+sqrt(2))^(2*n+2) / (4*sqrt(Pi*n)). - Vaclav Kotesovec, Oct 13 2016
a(n) = a(n)*(+9*a(n+1) - 90*a(n+2) + 81*a(n+3) - 12*a(n+4)) + a(n+1)*(-24*a(n+1) + 334*a(n+2) - 408*a(n+3) + 65*a(n+4)) + a(n+2)*(+72*a(n+2) + 54*a(n+3) - 18*a(n+4)) + a(n+3)*(+a(n+4)) for all n in Z where a(n) = -(1/2) * A050146(-n) if n < 0. - Michael Somos, Nov 25 2016
From Peter Luschny, Nov 09 2017: (Start)
a(n) = (-1)^n*n*hypergeom([-n, n+1], [2], 2).
a(n) = n*A001003(n). (End)

A110110 Number of symmetric Schroeder paths of length 2n (A Schroeder path of length 2n is a lattice path from (0,0) to (2n,0) consisting of U=(1,1), D=(1,-1) and H=(2,0) steps and never going below the x-axis).

Original entry on oeis.org

1, 2, 4, 8, 18, 38, 88, 192, 450, 1002, 2364, 5336, 12642, 28814, 68464, 157184, 374274, 864146, 2060980, 4780008, 11414898, 26572086, 63521352, 148321344, 354870594, 830764794, 1989102444, 4666890936, 11180805570, 26283115038
Offset: 0

Views

Author

Emeric Deutsch, Jul 12 2005

Keywords

Comments

a(n) = A026003(n-1)+A026003(n) (n>=1; indeed, every symmetric Schroeder path of length 2n is either a left factor L of length n-1 of a Schroeder path, followed by a H=(2,0) step and followed by the mirror image of L, or it is a left factor of length n of a Schroeder paths, followed by its mirror image).
a(n) is the number of sequences (f(n)) composed of n letters using letters a, b, c with the following rules. Each new sequence is built by adding a letter to the right end of a previous generation sequence. Letters a and b may not be adjacent. The number of c's <= n/2 in each sequence. Example: f(1) = {[a] [b]}, f(2) = {[aa], [ac], [bb], [bc]}, f(3) = {[aaa] [aac] [aca] [acb] [bbb] [bbc] [bcb] [bca]}. - Roger Ford, Jul 13 2014

Examples

			a(2)=4 because we have HH, UDUD, UHD and UUDD.
1 + 2*x + 4*x^2 + 8*x^3 + 18*x^4 + 38*x^5 + 88*x^6 + 192*x^7 + 450*x^8 + ...
		

Crossrefs

Partial sums of A247630.

Programs

  • Maple
    RR:=(1-z^2-sqrt(1-6*z^2+z^4))/2/z^2: G:=(1+z)*RR/(1-z*RR): Gser:=series(G,z=0,36): 1,seq(coeff(Gser,z^n),n=1..33);
  • Mathematica
    CoefficientList[Series[(1+x) * (-1 + Sqrt[1 - 6*x^2 + x^4] / (1 - 2*x - x^2)) / (2*x), {x, 0, 30}], x] (* Vaclav Kotesovec, Mar 09 2016 *)
  • PARI
    {a(n) = if( n<0, 0, polcoeff( (1 + x) * ( -1 + sqrt( 1 - 6*x^2 + x^4 + x^2 * O(x^n)) / (1 - 2*x - x^2)) / (2*x), n))} /* Michael Somos, Feb 07 2011 */

Formula

G.f.: (1 + x) * ( -1 + sqrt( 1 - 6*x^2 + x^4) / (1 - 2*x - x^2)) / (2*x). - Michael Somos, Feb 07 2011
G.f.: (1+z)R(z^2)/[1-zR(z^2)], where R=1+zR+zR^2=[1-z-sqrt(1-6z+z^2)]/(2z) is the g.f. of the large Schroeder numbers.
a(2*n) = A050146(n+1). - Michael Somos, Feb 07 2011
From Roger Ford, May 25 2014: (Start)
a(2*n) = 3*a(2*n-1) - 2*A026003(2*n-2), n>0.
a(2*n+1) = a(2*n) + 2*A026003(2*n) - A006318(n).
(End)
a(n) ~ sqrt(6*sqrt(2)-8) * (1+sqrt(2))^(n+2)/ (2*sqrt(Pi*n)). - Vaclav Kotesovec, Mar 09 2016
D-finite with recurrence (n+1)*a(n) +(n-3)*a(n-1) +2*(-3*n+2)*a(n-2) +2*(-3*n+8)*a(n-3) +(n-5)*a(n-4) +(n-5)*a(n-5)=0. - R. J. Mathar, Jul 26 2022

A343599 T(n,k) is the coordination number of the (n+1)-dimensional cubic lattice for radius k; triangle read by rows, n>=0, 0<=k<=n.

Original entry on oeis.org

1, 1, 4, 1, 6, 18, 1, 8, 32, 88, 1, 10, 50, 170, 450, 1, 12, 72, 292, 912, 2364, 1, 14, 98, 462, 1666, 4942, 12642, 1, 16, 128, 688, 2816, 9424, 27008, 68464, 1, 18, 162, 978, 4482, 16722, 53154, 148626, 374274, 1, 20, 200, 1340, 6800, 28004, 97880, 299660, 822560, 2060980, 1, 22, 242, 1782, 9922, 44726, 170610, 568150, 1690370, 4573910, 11414898
Offset: 0

Views

Author

R. J. Mathar, Apr 21 2021

Keywords

Examples

			The full array starts
     1      2      2      2      2      2      2      2      2
     1      4      8     12     16     20     24     28     32
     1      6     18     38     66    102    146    198    258
     1      8     32     88    192    360    608    952   1408
     1     10     50    170    450   1002   1970   3530   5890
     1     12     72    292    912   2364   5336  10836  20256
     1     14     98    462   1666   4942  12642  28814  59906
     1     16    128    688   2816   9424  27008  68464 157184
     1     18    162    978   4482  16722  53154 148626 374274
		

Crossrefs

Cf. A035607 (by antidiags), A008574 (n=1), A005899 (n=2), A008412 (n=3), A008413 (n=4), A008414 (n=5), A001105 (k=2), A035597 (k=3), A035598 (k=4).
Main diagonal gives A050146(n+1).

Programs

  • Maple
    A343599 := proc(n,k)
        local g,x,y ;
        g := (1+y)/(1-x-y-x*y) ;
        coeftayl(%,x=0,n) ;
        coeftayl(%,y=0,k) ;
    end proc:
  • Mathematica
    T[n_, k_] := Module[{x, y}, SeriesCoefficient[(1 + y)/(1 - x - y - x*y), {x, 0, n}] // SeriesCoefficient[#, {y, 0, k}]&];
    Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Aug 16 2023 *)

Formula

G.f.: (1+y)/(1-x-y-x*y).
T(n,k) = A008288(n,k) + A008288(n,k-1).

A110171 Triangle read by rows: T(n,k) (0 <= k <= n) is the number of Delannoy paths of length n that start with exactly k (0,1) steps (or, equivalently, with exactly k (1,0) steps).

Original entry on oeis.org

1, 2, 1, 8, 4, 1, 38, 18, 6, 1, 192, 88, 32, 8, 1, 1002, 450, 170, 50, 10, 1, 5336, 2364, 912, 292, 72, 12, 1, 28814, 12642, 4942, 1666, 462, 98, 14, 1, 157184, 68464, 27008, 9424, 2816, 688, 128, 16, 1, 864146, 374274, 148626, 53154, 16722, 4482, 978, 162, 18, 1
Offset: 0

Views

Author

Emeric Deutsch, Jul 14 2005

Keywords

Comments

A Delannoy path of length n is a path from (0,0) to (n,n), consisting of steps E=(1,0), N=(0,1) and D=(1,1).
Column k for k >= 1 has g.f. z^k*R^(k-1)*g*(1+z*R), where R = 1 + zR + zR^2 = (1 - z - sqrt(1-6z+z^2))/(2z) is the g.f. of the large Schroeder numbers (A006318) and g = 1/sqrt(1-6z+z^2) is the g.f. of the central Delannoy numbers (A001850).
Sum_{k=0..n} k*T(n,k) = A050151(n) (the partial sums of the central Delannoy numbers) = (1/2)*n*R(n), where R(n) = A006318(n) is the n-th large Schroeder number.
From Paul Barry, May 07 2009: (Start)
Riordan array ((1+x+sqrt(1-6x+x^2))/(2*sqrt(1-6x+x^2)), (1-x-sqrt(1-6x+x^2))/2).
Inverse of Riordan array ((1-2x-x^2)/(1-x^2), x(1-x)/(1+x)). (End)

Examples

			T(2,1)=4 because we have NED, NENE, NEEN and NDE.
Triangle starts:
    1;
    2,  1;
    8,  4,  1;
   38, 18,  6,  1;
  192, 88, 32,  8,  1;
From _Paul Barry_, May 07 2009: (Start)
Production matrix is
   2, 1,
   4, 2, 1,
   6, 2, 2, 1,
   8, 2, 2, 2, 1,
  10, 2, 2, 2, 2, 1,
  12, 2, 2, 2, 2, 2, 1,
  14, 2, 2, 2, 2, 2, 2, 1,
  16, 2, 2, 2, 2, 2, 2, 2, 1,
  18, 2, 2, 2, 2, 2, 2, 2, 2, 1 (End)
		

Crossrefs

Programs

  • Maple
    Q:=sqrt(1-6*z+z^2): G:=(1+z+Q)/Q/(2-t+t*z+t*Q): Gser:=simplify(series(G,z=0,13)): P[0]:=1: for n from 1 to 10 do P[n]:=coeff(Gser,z^n) od: for n from 0 to 10 do seq(coeff(t*P[n],t^k),k=1..n+1) od; # yields sequence in triangular form
  • Mathematica
    T[n_, n_] = 1;
    T[n_, k_] := Sum[Binomial[n, i] Binomial[2n-k-i-1, n-k-i], {i, 0, n}];
    Table[T[n, k], {n, 0, 9}, {k, 0, n}]//Flatten (* Jean-François Alcover, Jun 13 2019 *)
  • Sage
    A110171 = lambda n,k : binomial(n, k)*hypergeometric([k-n, n], [k+1], -1)
    for n in (0..9): [round(A110171(n,k).n(100)) for k in (0..n)] # Peter Luschny, Sep 17 2014

Formula

T(n,0) = A002003(n) for n >= 1.
T(n,1) = A050146(n) for n >= 1.
Row sums are the central Delannoy numbers (A001850).
G.f.: (1+z+Q)/(Q(2-t+tz+tQ)), where Q=sqrt(1-6z+z^2).
T(n,k) = x^(n-k)*((1+x)/(1-x))^n. - Paul Barry, May 07 2009
T(n,k) = C(n, k)*hypergeometric([k-n, n], [k+1], -1). - Peter Luschny, Sep 17 2014
From Peter Bala, Jun 29 2015: (Start)
T(n,k) = Sum_{i = 0..n} binomial(n,i)*binomial(2*n-k-i-1,n-k-i).
Matrix product A118384 * A007318^(-1)
Riordan array has the form ( x*h'(x)/h(x), h(x) ) with h(x) = ( 1 - x - sqrt(1 - 6*x + x^2) )/2 and so belongs to the hitting time subgroup H of the Riordan group (see Peart and Woan). (End)
T(n,k) = P(n-k, k, -1, 3), where P(n, alpha, beta, x) is the n-th Jacobi polynomial with parameters alpha and beta. Cf. A113139. - Peter Bala, Feb 16 2020

A111516 Triangle G(n,k) read by rows: number of order-preserving partial transformations (of an n-element totally ordered set) of waist k (waist(alpha) = max(Im(alpha))).

Original entry on oeis.org

1, 1, 1, 1, 3, 4, 1, 7, 12, 18, 1, 15, 32, 56, 88, 1, 31, 80, 160, 280, 450, 1, 63, 192, 432, 832, 1452, 2364, 1, 127, 448, 1120, 2352, 4424, 7700, 12642, 1, 255, 1024, 2816, 6400, 12896, 23872, 41456, 68464, 1, 511, 2304, 6912, 16896, 36288, 71136, 130176, 225648, 374274
Offset: 0

Views

Author

Abdullahi Umar, Aug 25 2008

Keywords

Examples

			Triangle G(n,k) (with rows n >= 0 and columns k = 0..n) begins:
  1;
  1,  1;
  1,  3,   4;
  1,  7,  12,  18;
  1, 15,  32,  56,  88;
  1, 31,  80, 160, 280,  450;
  1, 63, 192, 432, 832, 1452, 2364;
  ...
G(2,2) = 4 because there are exactly 4 order-preserving partial transformations (on a 2-element chain) of waist 2, namely: (1)->(2), (2)->(2), (1,2)->(1,2), and (1,2)->(2,2) - the mappings are coordinate-wise.
		

Crossrefs

Cf. A050146 (main diagonal), A055807, A123164 (row sums).

Formula

G(n,k) = Sum_{j=1..n} C(n,j)*C(k+j-2,j-1) for 1 <= k <= n. [Corrected by Petros Hadjicostas, Feb 13 2021]
G(n,k) = 2*G(n-1,k) - G(n-1,k-1) + G(n,k-1) for n >= 2 and 1 <= k <= n-1 with initial conditions G(n,0) = 1 for n >= 0, G(n,1) = 2^n - 1 for n >= 1, and G(n,n) = A050146(n) for n >= 2.
Sum_{k=0..n} G(n,k) = A123164(n).
From Petros Hadjicostas, Feb 13 2021: (Start)
G(n,k) = A055807(n+k,k) for 0 <= k <= n.
Bivariate o.g.f.: Sum_{n,k>=0} G(n,k)*x^n*y^k = ((2 - 2*y - 2*x*y + x*y^2) + 2*x*(y - 1)/(1 - x) + x*y*(2 - 3*y - 2*x*y + x*y^2)/sqrt(1 - 6*x*y + x^2*y^2))/(2*(1 - 2*x - y + x*y)). (End)

Extensions

G(7,5) corrected by and more terms from Petros Hadjicostas, Feb 13 2021

A337617 T(n, k) = (n + 1)*2^(n + k)*hypergeom([-n, k - n + 1], [2], 1/2), triangle read by rows for 0 <= k <= n.

Original entry on oeis.org

1, 4, 6, 18, 24, 28, 88, 112, 128, 120, 450, 560, 640, 640, 496, 2364, 2904, 3328, 3456, 3072, 2016, 12642, 15400, 17696, 18816, 17920, 14336, 8128, 68464, 82912, 95488, 103168, 102400, 90112, 65536, 32640, 374274, 451296, 520704, 569088, 580608, 540672, 442368, 294912, 130816
Offset: 0

Views

Author

Peter Luschny, Oct 19 2020

Keywords

Examples

			Triangle starts:
[0]                                1
[1]                              4, 6
[2]                           18, 24, 28
[3]                       88, 112, 128, 120
[4]                    450, 560, 640, 640, 496
[5]               2364, 2904, 3328, 3456, 3072, 2016
[6]         12642, 15400, 17696, 18816, 17920, 14336, 8128
[7]    68464, 82912, 95488, 103168, 102400, 90112, 65536, 32640
		

Crossrefs

T(n, n) = A171476(n) = A006516(n+1). T(n, 0) = A050146(n+1).
Cf. A337992 (row sums).

Programs

  • Maple
    T := (n, k) -> simplify((n + 1)*2^(n + k)*hypergeom([-n, k - n + 1], [2], 1/2)): seq(seq(T(n, k), k=0..n), n=0..8);
  • Mathematica
    T[n_,k_] := If[n==k, 2^n*(2^(n+1)-1), 2^(2*k+1)*Sum[(-1)^j*2^(n-k-j)* Binomial[n+1, j]*Binomial[2*n-j-k, n], {j, 0, n-k}]];
    Flatten[Table[T[n,k], {n,0,10}, {k,0,n}]] (* Detlef Meya, Dec 20 2023 *)

Formula

T(n, k) = if n = k then 2^n*(2^(n+1)-1), otherwise 2^(2*k+1)*Sum_{j=0..n-k} ((-1)^j*2^(n-k-j)*binomial(n+1,j)*binomial(2*n-j-k,n)). - Detlef Meya, Dec 20 2023

A297898 Triangle read by rows, T(n, k) = (-1)^(n-k)*binomial(n,k)*hypergeom([k - n, n + 1], k + 1, 2), for n >= 0 and 0 <= k <= n.

Original entry on oeis.org

1, 3, 1, 13, 4, 1, 63, 19, 5, 1, 321, 96, 26, 6, 1, 1683, 501, 138, 34, 7, 1, 8989, 2668, 743, 190, 43, 8, 1, 48639, 14407, 4043, 1059, 253, 53, 9, 1, 265729, 78592, 22180, 5908, 1462, 328, 64, 10, 1, 1462563, 432073, 122468, 33028, 8378, 1966, 416, 76, 11, 1
Offset: 0

Views

Author

Peter Luschny, Jan 08 2018

Keywords

Examples

			Triangle starts:
[0]    1
[1]    3,    1
[2]   13,    4,   1
[3]   63,   19,   5,   1
[4]  321,   96,  26,   6,  1
[5] 1683,  501, 138,  34,  7, 1
[6] 8989, 2668, 743, 190, 43, 8, 1
		

Crossrefs

T(n, 0) = A001850(n).
Row sums are A050146(n+1).

Programs

  • Mathematica
    T[n_, k_] := (-1)^(n - k) Binomial[n, k] Hypergeometric2F1[k - n, n + 1, k + 1, 2];
    Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten
    T[n_, k_] := Sum[Binomial[n - k, j]*Binomial[n + j, j], {j, 0, n - k}]; Flatten[Table[T[n, k], {n, 0, 9}, {k, 0, n}]] (* Detlef Meya, Jan 14 2024 *)

Formula

T(n, k) = Sum_{j=0..n - k} binomial(n - k, j)*binomial(n + j, j). - Detlef Meya, Jan 14 2024
Showing 1-10 of 10 results.