A050146
a(n) = T(n,n), array T as in A050143.
Original entry on oeis.org
1, 1, 4, 18, 88, 450, 2364, 12642, 68464, 374274, 2060980, 11414898, 63521352, 354870594, 1989102444, 11180805570, 63001648608, 355761664002, 2012724468324, 11406058224594, 64734486343480, 367891005738690, 2093292414443164, 11923933134635298, 67990160422313808
Offset: 0
G.f. = 1 + x + 4*x^2 + 18*x^3 + 88*x^4 + 450*x^5 + 2364*x^6 + 12642*x^7 + ...
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- A. Laradji and A. Umar, A. Combinatorial results for semigroups of order-preserving partial transformations, Journal of Algebra, 278 (2004), 342-359.
- A. Laradji and A. Umar, Combinatorial results for semigroups of order-decreasing partial transformations, J. Integer Seq., 7 (2004), 04.3.8.
- Huyile Liang, Yanni Pei, and Yi Wang, Analytic combinatorics of coordination numbers of cubic lattices, arXiv:2302.11856 [math.CO], 2023. See p. 4.
- Emanuele Munarini, Combinatorial properties of the antichains of a garland, Integers, 9 (2009), 353-374.
-
a050146 n = if n == 0 then 1 else a035607 (2 * n - 2) (n - 1)
-- Reinhard Zumkeller, Nov 05 2013, Jul 20 2013
-
Flatten[{1,RecurrenceTable[{(n-3)*(n-1)*a[n-2]-3*(n-2)*(2*n-3)*a[n-1]+(n-2)*(n-1)*a[n]==0,a[1]==1,a[2]==4},a,{n,20}]}] (* Vaclav Kotesovec, Oct 08 2012 *)
a[ n_] := If[ n == 0, 1, Sum[ Binomial[n, k] Binomial[n + k - 2, k - 1], {k, n}]]; (* Michael Somos, Nov 25 2016 *)
a[ n_] := If[ n == 0, 1, n Hypergeometric2F1[1 - n, n, 2, -1]]; (* Michael Somos, Nov 25 2016 *)
-
taylor(-(x^4+sqrt(x^2-6*x+1)*(x^3-5*x^2+5*x+1)-8*x^3+16*x^2-6*x+1)/(x^3+sqrt(x^2-6*x+1)*(x^2-4*x-1)-7*x^2+7*x-1),x,0,10); /* Vladimir Kruchinin, Nov 25 2016 */
-
a(n)=if(n==0, 1, sum(k=1,n, binomial(n, k)*binomial(n+k-2, k-1)) ); \\ Joerg Arndt, May 04 2013
-
A050146 = lambda n : n*hypergeometric([1-n, n], [2], -1) if n>0 else 1
[round(A050146(n).n(100)) for n in (0..24)] # Peter Luschny, Sep 17 2014
A064861
Triangle of Sulanke numbers: T(n,k) = T(n,k-1) + a(n-1,k) for n+k even and a(n,k) = a(n,k-1) + 2*a(n-1,k) for n+k odd.
Original entry on oeis.org
1, 1, 2, 1, 3, 2, 1, 5, 8, 4, 1, 6, 13, 12, 4, 1, 8, 25, 38, 28, 8, 1, 9, 33, 63, 66, 36, 8, 1, 11, 51, 129, 192, 168, 80, 16, 1, 12, 62, 180, 321, 360, 248, 96, 16, 1, 14, 86, 304, 681, 1002, 968, 592, 208, 32, 1, 15, 100, 390, 985, 1683, 1970, 1560, 800, 240, 32, 1, 17
Offset: 0
Barbara Haas Margolius (b.margolius(AT)csuohio.edu), Oct 10 2001
Table begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
2, 3, 5, 6, 8, 9, 11, ...
2, 8, 13, 25, 33, 51, ...
4, 12, 38, 63, 129, ...
4, 28, 66, 192, ...
- Reinhard Zumkeller, Rows n = 0..125 of table, flattened
- Milan Janjić, On Restricted Ternary Words and Insets, arXiv:1905.04465 [math.CO], 2019.
- Milan Janjic and B. Petkovic, A Counting Function, arXiv preprint arXiv:1301.4550 [math.CO], 2013. - From _N. J. A. Sloane_, Feb 13 2013
- Milan Janjic and B. Petkovic, A Counting Function Generalizing Binomial Coefficients and Some Other Classes of Integers, J. Int. Seq. 17 (2014) # 14.3.5.
- C. de Jesús Pita Ruiz Velasco, Convolution and Sulanke Numbers, JIS 13 (2010) 10.1.8.
- R. A. Sulanke, Problem 10894, Amer. Math. Monthly 108, (2001), p. 770.
Cf. central Delannoy numbers a(n,n) =
A001850(n), Delannoy numbers (same main diagonal): a(n,n) =
A008288(n,n), a(n-1,n)=
A002003(n), a(n,n+1)=
A002002(n), a(n,1)=
A058582(n), apparently a(n,n+2)=
A050151(n).
-
a064861 n k = a064861_tabl !! n !! k
a064861_row n = a064861_tabl !! n
a064861_tabl = map fst $ iterate f ([1], 2) where
f (xs, z) = (zipWith (+) ([0] ++ map (* z) xs) (xs ++ [0]), 3 - z)
-- Reinhard Zumkeller, May 01 2014
-
A064861 := proc(n,k) option remember; if n = 1 then 1; elif k = 0 then 0; else procname(n,k-1)+(3/2-1/2*(-1)^(n+k))*procname(n-1,k); fi; end;
seq(seq(A064861(i,j-i),i=1..j-1),j=1..19);
-
max = 12; se = Series[(1 + 2*x + y*x)/(1 - 2*x^2 - y^2*x^2 - 3*y*x^2), {x, 0, max}, {y, 0, max}]; cc = CoefficientList[se, {x, y}]; Flatten[ Table[ cc[[n, k]], {n, 1, max}, {k, n, 1, -1}]] (* Jean-François Alcover, Oct 21 2011, after g.f. *)
-
a(n,m)=if(n<0 || m<0,0,polcoeff(polcoeff((1+2*x+y*x)/(1-2*x^2-y^2*x^2-3*y*x^2)+O(x^(n+m+1)),n+m),m))
A118384
Gaussian column reduction of Hankel matrix for central Delannoy numbers.
Original entry on oeis.org
1, 3, 1, 13, 6, 1, 63, 33, 9, 1, 321, 180, 62, 12, 1, 1683, 985, 390, 100, 15, 1, 8989, 5418, 2355, 720, 147, 18, 1, 48639, 29953, 13923, 4809, 1197, 203, 21, 1, 265729, 166344, 81340, 30744, 8806, 1848, 268, 24, 1, 1462563, 927441, 471852, 191184, 60858
Offset: 0
Triangle begins:
1,
3, 1,
13, 6, 1,
63, 33, 9, 1,
321, 180, 62, 12, 1,
1683, 985, 390, 100, 15, 1
- Johann Cigler, Some elementary observations on Narayana polynomials and related topics, arXiv:1611.05252 [math.CO], 2016. See p. 19.
- P. Peart and W.-J. Woan, Generating Functions via Hankel and Stieltjes Matrices, J. Integer Seqs., Vol. 3 (2000), #00.2.1.
- P. Peart and W.-J. Woan, A divisibility property for a subgroup of Riordan matrices, Discrete Applied Mathematics, Vol. 98, Issue 3, Jan 2000, 255-263.
- W.-J. Woan, Hankel Matrices and Lattice Paths, J. Integer Sequences, 4 (2001), #01.1.2.
- Sheng-Liang Yang, Yan-Ni Dong, and Tian-Xiao He, Some matrix identities on colored Motzkin paths, Discrete Mathematics 340.12 (2017): 3081-3091.
-
Table[Sum[Binomial[n,i]Binomial[n,n-k-i]2^i,{i,0,n-k}],{n,0,8},{k,0,8}]//MatrixForm
-
create_list(sum(binomial(n,i)*binomial(n,n-k-i)*2^i,i,0,n),n,0,8,k,0,n);
A331791
Square array T(n,k), n >= 0, k >= 0, read by antidiagonals, where column k is the expansion of 2/(1 - 2*k*x + ((k-2)*x)^2 + (1 - k*x) * sqrt(1 - 2*k*x + ((k-2)*x)^2)).
Original entry on oeis.org
1, 1, 0, 1, 2, -3, 1, 4, 3, 0, 1, 6, 15, 4, 10, 1, 8, 33, 56, 5, 0, 1, 10, 57, 180, 210, 6, -35, 1, 12, 87, 400, 985, 792, 7, 0, 1, 14, 123, 740, 2810, 5418, 3003, 8, 126, 1, 16, 165, 1224, 6285, 19824, 29953, 11440, 9, 0, 1, 18, 213, 1876, 12130, 53550, 140497, 166344, 43758, 10, -462
Offset: 0
Square array begins:
1, 1, 1, 1, 1, 1, ...
0, 2, 4, 6, 8, 10, ...
-3, 3, 15, 33, 57, 87, ...
0, 4, 56, 180, 400, 740, ...
10, 5, 210, 985, 2810, 6285, ...
0, 6, 792, 5418, 19824, 53550, ...
-
T[n_, k_] := Sum[If[k==1 && j==0, 1, (k-1)^j] * Binomial[n + 1, j] * Binomial[n + 1, j + 1], {j, 0, n}]; Table[T[k, n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, May 05 2021 *)
A110171
Triangle read by rows: T(n,k) (0 <= k <= n) is the number of Delannoy paths of length n that start with exactly k (0,1) steps (or, equivalently, with exactly k (1,0) steps).
Original entry on oeis.org
1, 2, 1, 8, 4, 1, 38, 18, 6, 1, 192, 88, 32, 8, 1, 1002, 450, 170, 50, 10, 1, 5336, 2364, 912, 292, 72, 12, 1, 28814, 12642, 4942, 1666, 462, 98, 14, 1, 157184, 68464, 27008, 9424, 2816, 688, 128, 16, 1, 864146, 374274, 148626, 53154, 16722, 4482, 978, 162, 18, 1
Offset: 0
T(2,1)=4 because we have NED, NENE, NEEN and NDE.
Triangle starts:
1;
2, 1;
8, 4, 1;
38, 18, 6, 1;
192, 88, 32, 8, 1;
From _Paul Barry_, May 07 2009: (Start)
Production matrix is
2, 1,
4, 2, 1,
6, 2, 2, 1,
8, 2, 2, 2, 1,
10, 2, 2, 2, 2, 1,
12, 2, 2, 2, 2, 2, 1,
14, 2, 2, 2, 2, 2, 2, 1,
16, 2, 2, 2, 2, 2, 2, 2, 1,
18, 2, 2, 2, 2, 2, 2, 2, 2, 1 (End)
- G. C. Greubel, Rows n = 0..100 of triangle, flattened
- P. Peart and W.-J. Woan, A divisibility property for a subgroup of Riordan matrices, Discrete Applied Mathematics, Vol. 98, Issue 3, Jan 2000, 255-263.
- Robert A. Sulanke, Objects Counted by the Central Delannoy Numbers, Journal of Integer Sequences, Volume 6, 2003, Article 03.1.5.
- W.-j. Woan, The Lagrange Inversion Formula and Divisibility Properties, JIS 10 (2007) 07.7.8, example 5.
-
Q:=sqrt(1-6*z+z^2): G:=(1+z+Q)/Q/(2-t+t*z+t*Q): Gser:=simplify(series(G,z=0,13)): P[0]:=1: for n from 1 to 10 do P[n]:=coeff(Gser,z^n) od: for n from 0 to 10 do seq(coeff(t*P[n],t^k),k=1..n+1) od; # yields sequence in triangular form
-
T[n_, n_] = 1;
T[n_, k_] := Sum[Binomial[n, i] Binomial[2n-k-i-1, n-k-i], {i, 0, n}];
Table[T[n, k], {n, 0, 9}, {k, 0, n}]//Flatten (* Jean-François Alcover, Jun 13 2019 *)
-
A110171 = lambda n,k : binomial(n, k)*hypergeometric([k-n, n], [k+1], -1)
for n in (0..9): [round(A110171(n,k).n(100)) for k in (0..n)] # Peter Luschny, Sep 17 2014
A387337
a(n) = Sum_{k=0..n} 2^k * binomial(n+2,k) * binomial(n+2,k+2).
Original entry on oeis.org
1, 9, 62, 390, 2355, 13923, 81340, 471852, 2725365, 15698925, 90278298, 518620050, 2977523367, 17089401735, 98073111800, 562837648728, 3230477449641, 18545060127249, 106484493098230, 611580138259230, 3513476242850651, 20190255588746859, 116056618927038132
Offset: 0
-
[&+[2^k * Binomial(n+2,k) * Binomial(n+2,k+2): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Aug 29 2025
-
Table[Sum[2^k*Binomial[n+2, k] * Binomial[n+2, k+2], {k,0,n}], {n,0,25}] (* Vaclav Kotesovec, Aug 27 2025 *)
-
a(n) = sum(k=0, n, 2^k*binomial(n+2, k)*binomial(n+2, k+2));
A277060
a(n) = (1/2) * Sum_{k=0..n} (binomial(n,k) * binomial(n+k,k+1))^2 for n >= 0.
Original entry on oeis.org
0, 1, 28, 729, 19376, 529575, 14835780, 424231465, 12338211520, 363931754949, 10862528888300, 327501958094003, 9959845931792784, 305175084350065267, 9412306255856822388, 291982561878565118025, 9104382992541189221120
Offset: 0
Cf. 1/2 * Sum_{k=0..n} (binomial(n,k) * binomial(n+k,k+1))^m:
A050151 (m=1), this sequence (m=2).
-
a := proc(n) option remember; if n = 0 then 0 elif n = 1 then 1 else ( (2*n-1)*(51*n^4-102*n^3+19*n^2+ 32*n-14)*n^2*a(n-1) - n^2*(n-2)*(3*n^2-1)*(n-1)^2*a(n-2) )/( (n-1)^2*(3*n^2-6*n+2)*(n+1)^3 ) end if; end:
seq(a(n), n = 0..20); # Peter Bala, Mar 22 2023
-
a(n)=my(t=n); if(n<2, return(n)); sum(k=1,n, t*=(n-k+1)*(n+k)/k/(k+1); t^2, n^2)/2 \\ Charles R Greathouse IV, Nov 07 2016
A272865
Triangle read by rows, T(n,k) are covariances of inverse power traces of complex Wishart matrices with parameter c=2, for n>=1 and 1<=k<=n.
Original entry on oeis.org
4, 24, 160, 132, 936, 5700, 720, 5312, 33264, 198144, 3940, 29880, 190980, 1155600, 6823620, 21672, 167712, 1088856, 6670656, 39786120, 233908896, 119812, 941640, 6189540, 38300976, 230340740, 1363667256, 7997325700
Offset: 1
Triangle starts:
4;
24, 160;
132, 936, 5700;
720, 5312, 33264, 198144;
3940, 29880, 190980, 1155600, 6823620;
- F. D. Cunden, "Statistical distribution of the Wigner-Smith time-delay matrix moments for chaotic cavities", Phys. Rev. E 91, 060102(R) (2015).
- F. D. Cunden, F. Mezzadri, N. Simm and P. Vivo, "Correlators for the Wigner-Smith time-delay matrix of chaotic cavities", J. Phys. A: Math. Theor. 49, 18LT01 (2016).
- F. D. Cunden, F. Mezzadri, N. O'Connell and N. Simm, "Moments of Random Matrices and Hypergeometric Orthogonal Polynomials", Commun. Math. Phys. 369, 1091-1145 (2019).
- F. D. Cunden, Statistical distribution of the Wigner-Smith time-delay matrix moments for chaotic cavities, arXiv:1412.2172 [cond-mat.mes-hall], 2014-2015.
- F. D. Cunden, F. Mezzadri, N. Simm and P. Vivo, Correlators for the Wigner-Smith time-delay matrix of chaotic cavities, arXiv:1601.06690 [math-ph], 2016.
- F. D. Cunden, F. Mezzadri, N. O'Connell and N. Simm, Moments of Random Matrices and Hypergeometric Orthogonal Polynomials, arXiv:1805.08760 [math-ph], 2018.
-
P := (n,k) -> simplify(n*hypergeom([1-k,k+1],[1],-1)*hypergeom([1-n,n+1],[2],-1)): seq(seq(4*(n*k)*(P(n,k)+P(k,n))/(n+k),k=1..n),n=1..7); # Peter Luschny, May 08 2016
-
Clear["Global`*"];(*Wigner-Smith Covariance*)
P[k_] := Sum[Binomial[k - 1, j] Binomial[k + j, j], {j, 0, k - 1}]
Q[k_] := Sum[Binomial[k, j + 1] Binomial[k + j, j], {j, 0, k - 1}]
a[k1_, k2_] := 4 (k1 k2)/(k1 + k2) (P[k1] Q[k2] + P[k2] Q[k1])
L = 10; Table[a[k, l], {k, 1, L}, {l, 1, k}]
A350519
a(n) = A(n,n) where A(1,n) = A(n,1) = prime(n+1) and A(m,n) = A(m-1,n) + A(m,n-1) + A(m-1,n-1) for m > 1 and n > 1.
Original entry on oeis.org
3, 13, 63, 325, 1719, 9237, 50199, 275149, 1518263, 8422961, 46935819, 262512929, 1472854451, 8285893713, 46723439019, 264009961733, 1494486641911, 8473508472009, 48112827862527, 273541139290857, 1557023508876891, 8872219429659729, 50605041681538595, 288897992799897481
Offset: 1
The two-dimensional recurrence A(m,n) can be depicted in matrix form as
3 5 7 11 13 17 19 ...
5 13 25 43 67 97 133 ...
7 25 63 131 241 405 635 ...
11 43 131 325 697 1343 2383 ...
13 67 241 697 1719 3759 7485 ...
17 97 405 1343 3759 9237 20481 ...
19 133 635 2383 7485 20481 50199 ...
...
and then a(n) is the main diagonal of this matrix, A(n,n).
-
clear all
close all
sz = 14
f = zeros(sz,sz);
pp = primes(50);
f(1,:) = pp(2:end);
f(:,1) = pp(2:end);
for m=2:sz
for n=2:sz
f(m,n) = f(m-1,n-1)+f(m,n-1)+f(m-1,n);
end
end
an = []
for n=1:sz
an = [an f(n,n)];
end
S = sprintf('%i,',an);
S = S(1:end-1)
-
f[1,1]=3;f[m_,1]:=Prime[m+1];f[1,n_]:=Prime[n+1];f[m_,n_]:=f[m,n]=f[m-1,n]+f[m,n-1]+f[m-1,n-1];Table[f[n,n],{n,25}] (* Giorgos Kalogeropoulos, Jan 03 2022 *)
Showing 1-9 of 9 results.
Comments