A050376 "Fermi-Dirac primes": numbers of the form p^(2^k) where p is prime and k >= 0.
2, 3, 4, 5, 7, 9, 11, 13, 16, 17, 19, 23, 25, 29, 31, 37, 41, 43, 47, 49, 53, 59, 61, 67, 71, 73, 79, 81, 83, 89, 97, 101, 103, 107, 109, 113, 121, 127, 131, 137, 139, 149, 151, 157, 163, 167, 169, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241
Offset: 1
Examples
Prime powers which are not terms of this sequence: 8 = 2^3 = 2^(1+2), 27 = 3^3 = 3^(1+2), 32 = 2^5 = 2^(1+4), 64 = 2^6 = 2^(2+4), 125 = 5^3 = 5^(1+2), 128 = 2^7 = 2^(1+2+4) "Fermi-Dirac factorizations": 6 = 2*3, 8 = 2*4, 24 = 2*3*4, 27 = 3*9, 32 = 2*16, 64 = 4*16, 108 = 3*4*9, 120 = 2*3*4*5, 121 = 121, 125 = 5*25, 128 = 2*4*16.
References
- V. S. Abramovich, On an analog of the Euler function, Proceeding of the North-Caucasus Center of the Academy of Sciences of the USSR (Rostov na Donu) (1981) No. 2, 13-17 (Russian; MR0632989(83a:10003)).
- S. Ramanujan, Highly Composite Numbers, Collected Papers of Srinivasa Ramanujan, p. 125, Ed. G. H. Hardy et al., AMS Chelsea 2000.
- V. S. Shevelev, Multiplicative functions in the Fermi-Dirac arithmetic, Izvestia Vuzov of the North-Caucasus region, Nature sciences 4 (1996), 28-43 (in Russian; MR 2000f: 11097, pp. 3912-3913).
- J. K. Uhlmann, Dynamic map building and localization: new theoretical foundations, Doctoral Dissertation, University of Oxford, Appendix 16, 1995.
Links
- T. D. Noe and Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
- Steven R. Finch, Unitarism and Infinitarism, February 25, 2004. [Cached copy, with permission of the author]
- Simon Litsyn and Vladimir Shevelev, On factorization of integers with restrictions on the exponent, INTEGERS: Electronic Journal of Combinatorial Number Theory, 7 (2007), #A33, 1-36.
- OEIS Wiki, "Fermi-Dirac representation" of n.
- Vladimir Shevelev, Compact integers and factorials, Acta Arith. 126 (2007), no.3, 195-236.
- J. K. Uhlmann, Appendix 16, Doctoral Dissertation, University of Oxford, page 243, 1995.
Crossrefs
Programs
-
Haskell
a050376 n = a050376_list !! (n-1) a050376_list = filter ((== 1) . a209229 . a100995) [1..] -- Reinhard Zumkeller, Mar 19 2013
-
Maple
isA050376 := proc(n) local f,e; f := ifactors(n)[2] ; if nops(f) = 1 then e := op(2,op(1,f)) ; if isA000079(e) then true; else false; end if; else false; end if; end proc: A050376 := proc(n) option remember ; local a; if n = 1 then 2 ; else for a from procname(n-1)+1 do if isA050376(a) then return a; end if; end do: end if; end proc: # R. J. Mathar, May 26 2017
-
Mathematica
nn = 300; t = {}; k = 1; While[lim = nn^(1/k); lim > 2, t = Join[t, Prime[Range[PrimePi[lim]]]^k]; k = 2 k]; t = Union[t] (* T. D. Noe, Apr 05 2012 *)
-
PARI
{a(n)= local(m, c, k, p); if(n<=1, 2*(n==1), n--; c=0; m=2; while( c
Michael Somos, Apr 15 2005; edited by Michel Marcus, Aug 07 2021 -
PARI
lst(lim)=my(v=primes(primepi(lim)),t); forprime(p=2,sqrt(lim),t=p; while((t=t^2)<=lim,v=concat(v,t))); vecsort(v) \\ Charles R Greathouse IV, Apr 10 2012
-
PARI
is_A050376(n)=2^#binary(n=isprimepower(n))==n*2 \\ M. F. Hasler, Apr 08 2015
-
PARI
ispow2(n)=n && n>>valuation(n,2)==1 is(n)=ispow2(isprimepower(n)) \\ Charles R Greathouse IV, Sep 18 2015
-
PARI
isok(n)={my(e=isprimepower(n)); e && !bitand(e,e-1)} \\ Andrew Howroyd, Oct 16 2024
-
Python
from sympy import isprime, perfect_power def ok(n): if isprime(n): return True answer = perfect_power(n) if not answer: return False b, e = answer if not isprime(b): return False while e%2 == 0: e //= 2 return e == 1 def aupto(limit): alst, m = [], 1 for m in range(1, limit+1): if ok(m): alst.append(m) return alst print(aupto(241)) # Michael S. Branicky, Feb 03 2021
-
Python
from sympy import primepi, integer_nthroot def A050376(n): def bisection(f,kmin=0,kmax=1): while f(kmax) > kmax: kmax <<= 1 kmin = kmax >> 1 while kmax-kmin > 1: kmid = kmax+kmin>>1 if f(kmid) <= kmid: kmax = kmid else: kmin = kmid return kmax def f(x): return n+x-sum(primepi(integer_nthroot(x,1<Chai Wah Wu, Feb 18-19 2025
-
Scheme
(define A050376 (MATCHING-POS 1 1 (lambda (n) (= 1 (A064547 n))))) ;; Requires also my IntSeq-library. - Antti Karttunen, Feb 09 2016
Formula
From Vladimir Shevelev, Mar 16 2012: (Start)
Product_{i>=1} a(i)^k_i = n!, where k_i = floor(n/a(i)) - floor(n/a(i)^2) + floor(n/a(i)^3) - floor(n/a(i)^4) + ...
Denote by A(x) the number of terms not exceeding x.
Then A(x) = pi(x) + pi(x^(1/2)) + pi(x^(1/4)) + pi(x^(1/8)) + ...
Conversely, pi(x) = A(x) - A(sqrt(x)). For example, pi(37) = A(37) - A(6) = 16-4 = 12. (End)
From Vladimir Shevelev, Aug 31 2013: (Start)
A Fermi-Dirac analog of Euler product: Zeta(s) = Product_{k>=1} (1+a(k)^(-s)), for s > 1.
In particular, Product_{k>=1} (1+a(k)^(-2)) = Pi^2/6. (End)
Extensions
Edited by Charles R Greathouse IV, Mar 17 2010
More examples from Daniel Forgues, Feb 09 2011
Comments