A050488 a(n) = 3*(2^n-1) - 2*n.
0, 1, 5, 15, 37, 83, 177, 367, 749, 1515, 3049, 6119, 12261, 24547, 49121, 98271, 196573, 393179, 786393, 1572823, 3145685, 6291411, 12582865, 25165775, 50331597, 100663243, 201326537, 402653127, 805306309, 1610612675, 3221225409, 6442450879, 12884901821, 25769803707
Offset: 0
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..1000
- Adam Buck, Jennifer Elder, Azia A. Figueroa, Pamela E. Harris, Kimberly Harry, and Anthony Simpson, Flattened Stirling Permutations, arXiv:2306.13034 [math.CO], 2023. See p. 14.
- Tamas Lengyel, On p-adic properties of the Stirling numbers of the first kind, Journal of Number Theory, 148 (2015) 73-94.
- Index entries for linear recurrences with constant coefficients, signature (4,-5,2).
Crossrefs
Programs
-
GAP
List([0..30],n->3*(2^n-1)-2*n); # Muniru A Asiru, Oct 26 2018
-
Haskell
a050488 n = sum $ zipWith (*) a000079_list (reverse $ take n a005408_list) -- Reinhard Zumkeller, Jul 24 2015
-
Magma
[3*(2^n-1) - 2*n: n in [0..30]]; // G. C. Greubel, Oct 23 2018
-
Maple
seq(coeff(series(x*(x+1)/((1-x)^2*(1-2*x)),x,n+1), x, n), n = 0 .. 30); # Muniru A Asiru, Oct 26 2018
-
Mathematica
Table[3(2^n-1)-2n,{n,0,30}] (* or *) LinearRecurrence[{4,-5,2}, {0,1,5}, 40] (* Harvey P. Dale, Apr 09 2018 *)
-
PARI
a(n)=3*(2^n-1)-2*n \\ Charles R Greathouse IV, Sep 24 2015
-
Python
for n in range(0, 30): print(3*(2**n-1) - 2*n, end=', ') # Stefano Spezia, Oct 27 2018
Formula
Row sums of A125165: (1, 5, 15, 37, ...). Binomial transform of [1, 4, 6, 6, 6, ...] = [1, 5, 15, 37, ...]. 4th diagonal from the right of A126777 = (1, 5, 15, ...). - Gary W. Adamson, Dec 23 2006
a(n) = 2*a(n-1) + (2n-1). - Gary W. Adamson, Sep 30 2007
From Johannes W. Meijer, Feb 20 2009: (Start)
a(n+1) = A156920(n+1,1).
a(n+1) = A156919(n+1,1)/2^n.
a(n+1) = A142963(n+2,1)/2.
a(n) = 4a(n-1) - 5a(n-2) + 2a(n-3) for n>2 with a(0) = 0, a(1) = 1, a(2) = 5.
G.f.: z*(1+z)/((1-z)^2*(1-2*z)).
(End)
a(n) = 2*n + 2*a(n-1) - 1 (with a(0)=0). - Vincenzo Librandi, Aug 06 2010
a(n+1) = Sum_{k=0..n} A000079(k) * A005408(n-k), convolution of the powers of 2 with the odd numbers. - Reinhard Zumkeller, Mar 08 2012
E.g.f.: exp(x)*(3*exp(x) - 2*x - 3). - Stefano Spezia, May 15 2023
Comments